研究生: |
余昇剛 Yu, Sheng-Kang |
---|---|
論文名稱: |
相位移差分干涉對比式三維形貌量測儀研究與開發 Study and Development of Three-Dimensional Topography Measurement System with Phase Shifting Differential Interference Contrast Technique |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
章明
陳亮嘉 陳政寰 戴鴻名 王立康 湯學成 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 差分干涉對比術 、渥拉斯頓稜鏡 、相移術 、定量化相位還原 、表面形貌 、透明物件 |
外文關鍵詞: | Differential Interference Contrast (DIC), Nomarski prism, phase shifting, quantitative phase restoration, topography, transparent specimen |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來光電顯示產品大量使用多種透明材質的基板及表面薄膜結構,為了滿足製程監控與品質的要求,對此類元件有大量的精密量測需求。在生物醫學領域中,對於高透光率的細胞微結構觀察,亦需要定量化且即時的動態檢測技術。因此建立一套可量測透明物件形貌尺寸的光學系統,達成高速、高精度的三維形貌量測技術為一大關鍵。
本研究以相位移式差分干涉對比(Phase shifting differential interference contrast, PS-DIC)技術為核心,結合定量化相位還原演算法開發一套三維形貌量測系統。首先,本研究驗證採用差分干涉對比技術於階高形貌量測的可行性,並提出修正型傅立葉相位積分(modified Fourier phase integration, MFPI)重建演算法,提升重建相位的精確度,降低定量化相位還原過程的誤差,並解決雜訊及邊界條件問題。接著,設計開發一套相位移式差分干涉對比量測系統,並提出誤差補償及校正方法,以提升形貌量測精度。另外,為了加速量測速度以符合即時動態檢測的需求,提出適用於穿透式差分干涉對比量測系統的二步相位移方法來縮短量測流程。最後,探討所開發的光程差量測系統對於測量不同幾何形狀透明待測物的情形及測量生物細胞等樣品的應用。
Various transparent components are recently used in numerous optoelectronic devices. As to ensure the product quality, there is an increasing demand for precision profile measurement of these transparent objects. For biological application, quantitative real-time phase measurement of cells with high transmittance is also a popular issue. Therefore, developing a three-dimensional topography measurement system with high speed and high precision for measuring transparent specimens become important.
In this study, a phase shifting differential interference contrast (PS-DIC) topography measurement system with quantitative phase restoration method is developed. First, the feasibility of measuring step height specimen through the DIC technique is studied. A modified Fourier phase integration (MFPI) method is proposed to improve the profile reconstruction precision and reduce the effects of noise. Secondly, a PS-DIC measurement system is designed and developed. The error compensation methods and calibration process are also presented. Then a speed up two step phase shifting algorithm is proposed to accelerate the measuring speed of the system for industrial real-time measurement purpose. Moreover, effects of various specimen geometries on profile measurement precision and optical path difference measurement for biological applications are studied.
[1] C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear, Vol. 190, pp. 76-88 (1995).
[2] X. Jing, X. Ning, Z. Chi, and S. Quan, “Real-time 3D shape measurement system based on single structure light pattern,” IEEE International Conference on Robotics and Automation, Anchorage, Alaska, pp. 121-126 (2010).
[3] L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol., Vol. 22, 035103 (2011).
[4] B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Inst., Vol. 80, 073706 (2009).
[5] B. Bhushan, J. C. Wyant, J. Meiling, “A new three-dimensional non-contact digital optical profiler,” Wear, Vol. 122, pp. 301-312 (1988).
[6] R. K. Leach, R. Boyd, T. Burke, H.-U. Danzebrink, K. Dirscherl, T. Dziomba, M. Gee, L. Koenders, V. Morazzani, A. Pidduck, D. Roy, W. Unger and A. Yacoot, “The European nanometrology landscape,” Nanotechnology, Vol. 22, 062001 (2011).
[7] D. B. Murphy, “Fundamentals of light microscopy and electronic imaging,” John Wiley and Sons, Inc., New York, pp. 153-168 (2003).
[8] E. Hecht, “Optics,” Addison Wesley Publishing Company, 4th, New York, pp. 10-358 (2002).
[9] S. O. Kasap, “Optoelectronics and photonics principles and practices,” Prentice-Hall, International Edition, pp.275-314 (2001).
[10] D. C. Ghiglia and M. D. Pritt, “Two-dimensional phase unwrapping: theory, algorithms, and software,” John Wiley and Sons, Inc., New York (1998).
[11] D. Malacare, “Optical shop testing,” John Wiley and Sons, Inc., 3rd, New York (2006).
[12] D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. 1. Theory,” J. Opt. Soc. Am., Vol. 69, pp. 357-366 (1979).
[13] J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments,” Appl. Opt., Vol. 19, pp. 2998-3009 (1980).
[14] W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE, Vol. 1332, pp. 525-529 (1990).
[15] C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE, Vol. 2984, pp. 72-81 (1997).
[16] S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE, Vol. 6443, 64430M (2007).
[17] C. Preza, “Rotational-diversity phase estimation from differential-interference-contrast microscopy images,” J. Opt. Soc. Am. A, Vol. 17, pp. 415-424 (2000).
[18] M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Apt. Opt., Vol. 45, pp. 460-469 (2006).
[19] M. Shribak, “Orientation independent differential interference contrast microscopy technique and device,” U.S. patent 7233434 (2007).
[20] M. Shribak, “Orientation independent differential interference contrast microscopy technique and device,” U.S. patent 7564618 (2009).
[21] Z. Kam, “Microscopic differential interference contrast image processing by line integration (LID) and deconvolution,” Bioimaging, Vol. 6, pp. 166-176 (1998).
[22] B. Heise, A. Sonnleitner, and R. P Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Techniq., Vol. 66, pp. 312-320 (2005).
[23] Z. Liu, X. Dong, Q. Chen, C. Yin, Y. Xu, and Y. Zheng, “Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope,” Appl. Opt., Vol. 43, pp. 1485-1492 (2004).
[24] A. Talmi, and E. N. Ribak, “Wavefront reconstruction from its gradients,” J. Opt. Soc. Am. A, Vol. 23, pp. 288-297 (2006).
[25] M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc., Vol. 214, pp. 7-12 (2004).
[26] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A, Vol. 18, pp. 1862-1870 (2001).
[27] K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A, Vol. 18, pp. 1871-1881 (2001).
[28] E. B. Van Munster, L. J. Van Vliet, and J. A. Aten, “Reconstruction of optical path length distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microscopy, Vol. 188, pp. 149-157 (1997).
[29] M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation- independent differential interference contrast (DIC) microscopy and its combination with orientation-independent polarization system,” J. Biomed. Opt., Vol. 13, 014011 (2008).
[30] F. Kagalwala and T. Kanade, “Reconstructing specimens using DIC microscope images,” IEEE Trans. Syst. Man Cybern. B, Vol. 33, pp.728-737 (2003).
[31] N. Axelrod, A. Radko, A. Lewis, and N. Ben-Yosef, “Topographical profiling and refractive index analysis by use of differential interference contrast with bright-filed intensity and atomic force imaging,” Appl. Opt., Vol. 43, pp. 2272-2284 (2004).
[32] H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun., Vol. 260, pp. 117-126 (2006).
[33] R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films, Vol. 462-463, pp. 257-262 (2004).
[34] T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” Handbook of Biological Confocal Microscopy, J. B. Pawley, pp. 389-402 (1995).
[35] D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt., Vol. 36, pp. 1766-1775 (1997).
[36] R.T. Framkot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, pp. 439-451 (1988).
[37] C. J. Cogswell, K. G. Larkin, M. R. Arnison, and J. W. O’Byrne, “3D Fourier analysis methods for digital processing and 3D visualization of confocal transmission images,” Proc. SPIE, Vol. 2412, pp. 230-235 (1995).
[38] C. Preza, D. L. Snyder, and J.-A. Conchello, “Image reconstruction for three-dimensional transmitted-light DIC microscopy,” Proc. SPIE, Vol. 2984, pp. 220-231 (1997).
[39] P. A. Feineigle, A. P. Witkin, and V. L. Stonick, “Processing of 3D DIC microscopy images for data visualization,” IEEE International Conference on Acoutstics, Speech, and Signal Processing, Vol. 4, pp. 2160-2163 (1996).
[40] N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak and J. C. Wyant, “Dynamic Interferometry,” Proc. SPIE, Vol. 5875, 58750F (2005).
[41] X. Cui, M. Lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett., Vol. 93, 091113 (2008).
[42] P. Bon, G. Maucort, B. Wattellier and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express, Vol. 17, pp. 13080-13094 (2009).
[43] D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett., Vol. 35, pp. 2370-2372 (2010).
[44] C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express, Vol. 18, No. 5, pp. 4717-4726 (2010).
[45] S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett., Vol. 35, pp. 447-449 (2010).
[46] L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express, Vol. 2, pp. 331-344 (2011).
[47] Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett., Vol. 36, pp. 430-432 (2011).
[48] J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Opt. Express, Vol. 21, pp. 112-121 (2013)
[49] C. Li and Y. Zhu, “Spectral-domain interferometry for quantitative DIC microscopy,” Proc. SPIE, Vol. 8949, 89491D (2014).
[50] T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt., Vol. 47, pp. 4787-4792 (2008).
[51] D. G. Abdelsalam, B. Yao, P. Gao, J. Min, and R. Guo, “Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry,” Appl. Opt., Vol. 51, pp. 4891-4895 (2012).
[52] T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express, Vol. 18, pp. 18975-18980 (2010) .
[53] J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE, Vol. 5531, pp. 304-314 (2004).
[54] W. Shimada, T. Sato and T. Yatagai, “Optical surface micro topography using Phase-Shifting Nomarski microscope,” Proc. SPIE, Vol. 1332, pp. 525-529 (1990).
[55] S. S. Kou and C. J. R. Sheppard, “Quantitative phase restoration in differential interference contrast (DIC) microscopy,” Proc. SPIE, Vol. 7000, 700005 (2008).
[56] D. Duncan, D. Fischer, M. Dansehbod, A. Dayton, S. Prahl, “Differential interference contrast microscopy for the quantitative assessment of tissue organization,” Proc. SPIE, Vol. 7570, 75700C (2010).
[57] P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun., Vol. 126, pp. 220-222 (1996).
[58] S. Almazán-Cuéllar and D. Malacara-Hernández, “Two-step phase- shifting algorithm,” Opt. Eng., Vol.42, pp. 3524-3531 (2003).
[59] P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt., Vol. 45, pp. 5086-5091(2006).
[60] X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett., Vol. 31, pp. 1414-1416 (2006).
[61] F. Yang and X. He, “Two-step phase-shifting fringe projection profilometry: intensity derivative approach,” Appl. Opt., Vol.46, pp. 7172-7178 (2007).
[62] S. H. Jeon and S. K. Gil, “Measurement of a mirror surface topography using 2-frame phase-shifting digital interferometry,” J. Opt. Soc. Korea, Vol. 13, pp. 245-250 (2009).
[63] S. K. Yu, T. K. Liu, and S. C. Lin, “Height measurement of transparent object by adopting differential interference contrast technology,” Appl. Opt., Vol. 49, pp. 2588-2596 (2010).
[64] S. K. Yu, W.L. Chen, T. K. Liu, and S. C. Lin,“Profile measurement of transparent inclined surface with transmitted differential interference contrast shearing interferometer,” Opt. Express, Vol. 20, pp. 19868-19881, (2012).
[65] S. V. King, A. R. Libertun, R. Piestun, and C. J. Cogswell, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt., Vol. 13, 024020 (2008).
[66] P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt., Vol. 51, pp. 5698-5704 (2012).
[67] S. B. Mehta and C. J. R. Sheppard, “Sample-less calibration of the differential interference contrast microscope,” Appl. Opt., Vol. 49, pp. 2954-2968 (2010).