簡易檢索 / 詳目顯示

研究生: 朱志仁
Chu, Chih-Ren
論文名稱: 重氮偶合反應之流體力學模擬
Computational Fluid Dynamic Simulation of Diazo Coupling Reaction
指導教授: 汪上曉
Wong, Shan-Hill
口試委員: 康嘉麟
吳承彥
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 重氮化反應偶合反應流動式反應器計算流體力學軟體模擬程序
外文關鍵詞: diazotization reaction, flow reactors, coupling reaction, CFD, simulation program
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  在染料工業中,有機原料經過一連串的化學反應後形成染料中間體,這些染料中間體再經過重氮化反應生成重氮化合物,再將重氮化合物經過偶合反應形成偶氮染料,這些偶氮染料經後處理之後成為染料,其中最重要的兩個步驟是重氮化反應與偶合反應。近年來,流動式反應器逐漸取代密閉式反應器,而在流動式反應器中進行重氮化反應與偶合反應反應時,需要考量到反應物的混合情況、反應溫度以及pH值等因素,以確保在進行反應後可以得到品質較高的產物。
    本研究利用計算流體力學軟體CFD來建立重氮化反應與偶合反應的模型,並透過模擬的方式來針對在重氮化反應與偶合反應時,反應液體的混合、溫度變化、轉化率以及pH值。從模擬結果可以看出,在玻璃螺旋混合管的前半部分,兩種反應液體的混合已達完全。在產物的轉化率方面,重氮化反應與偶合反應皆達到九成。另外在偶合反應階段時,由於鹼性的環境會使重氮化合物產生結晶現象,因此在此階段的pH值也需要計算,經由結果顯示在Y型管的交接處pH值為偏酸性,所以不會有結晶產生。本研究已完成在實驗室等級的重氮化反應與偶合反應模擬,並且與實驗相符,未來可以藉由此模擬程序,來將此連續式反應器進行放大。


    In the dye industry, organic raw materials undergo a series of chemical reactions to form dye intermediates. These dye intermediates are subjected to diazotization to form diazo compounds, and the diazo compounds are coupled to form azo dyes. These azo dyes are used. After the post-treatment, it becomes a dye, and the most important two steps are the diazotization reaction and the coupling reaction. In recent years, the flow reactor has gradually replaced the closed reactor, and when the diazotization reaction and the coupling reaction are carried out in the flow reactor, factors such as the mixing of the reactants, the reaction temperature, and the pH value need to be considered. Ensure that a higher quality product is obtained after the reaction.
    In this study, the CFD was used to establish a model of diazotization reaction and coupling reaction, and the mixing, temperature change, conversion rate and pH value of the reaction liquid were analyzed by means of simulation. It can be seen from the simulation results that the mixing of the two reaction liquids has been completed in the first half of the glass spiral mixing tube. In terms of the conversion rate of the product, the diazotization reaction and the coupling reaction reached 90%. In addition, in the coupling reaction stage, the diazonium compound crystallizes due to the alkaline environment, so the pH value at this stage also needs to be calculated. The result shows that the pH value at the junction of the Y-tube is acidic, so There will be crystals.
    This study has completed the laboratory-scale diazotization reaction and coupling reaction simulation, and is consistent with the experiment, which can be amplified by this simulation program in the future

    中文摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-2-1 微型混合器 3 1-2-2 重氮偶合反應 7 1-2-3 重氮偶合反應器 11 1-3 研究目的 14 1-4 章節安排 15 第二章 研究方法 16 2-1 模擬簡介 16 2-2 反應製程與材料 17 2-2-1 反應製程介紹 17 2-2-2 重氮偶合原物料 19 2-2-3幾何結構 20 2-3 反應動力學 26 2-3-1 重氮化反應階段 26 2-3-2 偶合反應階段 27 第三章 重氮化反應階段 28 3-1 重氮化反應階段簡介 28 3-2 模擬設定 29 3-2-1 統御方程式 29 3-2-2 入料條件與邊界條件 31 3-4 模擬結果 32 3-4-1 反應物混合情形 32 3-4-2 產物轉化率 35 3-4-3 溫度變化 39 第四章 偶合反應階段 41 4-1 偶合反應階段簡介 41 4-2 模擬設定 42 4-2-1 統御方程式 42 4-2-2 入料條件與邊界設定 44 4-3 模擬結果 45 4-3-1 反應物混合情形 45 4-3-2 產物轉化率 49 4-3-3 溫度變化 52 4-3-4 反應液體pH值 54 第五章 結論 55 第六章 參考文獻 56

    1. Klaus Hunger, P. M., Wolfgang Rieper, Shufen Zhang,. (2017). Azo Dyes, 1. General.
    2. H Zollinger, Color chemistry: syntheses, properties, and applications of organic dyes and pigments (2003)
    3. Sutton, D. (1993). Organometallic diazo compounds. Chemical reviews.
    4. Nguyen, N.-T., & Wu, Z. (2005). Micromixers—a review. Journal of Micromechanics and Microengineering, 15(2), R1-R16.
    5. Keil, F.J., Process intensification. Reviews in Chemical Engineering, 2018. 34(2): p. 135-200.
    6. Wong, S., Ward, M., & Wharton, C. (2004). Micro T-mixer as a rapid mixing micromixer. Sensors and Actuators B: Chemical, 100(3), 359-379.
    7. Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing within microfluidic devices. Top Curr Chem, 304, 27-68.1.
    8. Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1(1):56–60.
    9. Jen, C. P., Wu, C. Y., Lin, Y. C., & Wu, C. Y. (2003). Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip, 3(2), 77-81.
    10. Park, S.-J., Kim, J. K., Park, J., Chung, S., Chung, C., & Chang, J. K. (2004). Rapid three-dimensional passive rotation micromixer using the breakup process. Journal of Micromechanics and Microengineering, 14(1), 6-14.
    11. Abraham D. Stroock, S. K. W. D., Armand Ajdari, Igor Mezić, Howard A. Stone, George M. Whitesides (2002). Chaotic Mixer for Microchannels. Science, 295, 647-652
    12. M Gomberg, W. B. (1924). THE SYNTHESIS OF BIARYL COMPOUNDS BY MEANS OF THE DIAZO REACTION. Journal of the American Chemical Society, 46, 2339-2343.
    13. 秦云, 重氮化与偶合反应的理论研究. 保山师专学报, 2002. 22.
    14. FW Bergstrom, J. B. (1942). The Direct Diazotization of Nitrobenzene. Journal of the American Chemical Society, 64, 19-21.
    15. Craig, L. (1934). A Study of the Preparation of Alpha-Pyridyl Halides from Alpha-Amino pyridine by the Diazo Reaction. Journal of the American Chemical Society, 50, 231-231.
    16. Hauser, M. (1964). The Diazotization and Autocoupling of Guanazole. The Journal of Organic Chemistry, 29.
    17. K Breig, G. D., N Hamm. (1980). Process for the continuous indirect diazotization of aromatic amines. US Patent 4,233,213
    18. TI Godovikova, O. R., LI khmel'nitskii. (1983). Diazotisation of Weakly Basic Aromatic and Heterocyclic Amines in Strongly Acid Media. Russian Chemical Reviews, 52, 440-445.
    19. Schoutissen, H. (1993). The Diazotization of Very Weakly Basic Amines. Journal of the American Chemical Society, 55, 4531-4534.
    20. H Yamada, Y. H., S Sekiguchi, Kohji Matsui. (1974). The Diazo-coupling Reaction of Phenol in Organic Solvents. The Isomer Ratio. Bulletin of the Chemical, 47, 2351-2352.
    21. H Iwamoto, T. S., H Kobayashi. (1983). A facile in-situ diazo-coupling reactions under two-phase conditions catalyzed by tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ion. Tetrahedron letters, 24(4703-4706).
    22. H Iwamoto, M. Y., T Sonoda, H Kobayashi. (1983). Anion-catalyed Phase-transfer Catalysis. I. Application to Diazo-coupling Reactions. Bulletin of the Chemical Society of Janpn, 56, 796-801.
    23. S Xie, A. N., P Rochon. (1993). Recent Developments in Aromatic Azo Polymers Research. Chemistry of Materials, 5, 403-411.
    24. Forstinger, K., & Metz, H. J. (2001). Diazo Compounds and Diazo Reactions.
    25. A Roglans, A. P.-Q., M Moreno-Manas. (2006). Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling. Chemical reviews, 106, 4622-4643.
    26. Y Hashida, H. I., S Sekiguchi, Kohji Matsui. (1974). Solvent Effects in Diazo-coupling Reactions. Bulletin of the Chemical Society of Japan, 47, 1224-1227.
    27. Deadman, B. J., Collins, S. G., & Maguire, A. R. (2015). Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds. Chemistry, 21(6), 2298-2308.
    28. L. Malet-Sanz, J. Madrzak, R. S. Holvey, (2009). A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor. T. Underwood, Tetrahedron Lett.. 50, 7263–7267.
    29. Rossi, E., Woehl, P., & Maggini, M. (2011). Scalable in Situ Diazomethane Generation in Continuous-Flow Reactors. Organic Process Research & Development, 16(5), 1146-1149.
    30. TG Archibald, J. B., HF Reese. (1998). Continuous Process for Diazomethane from an N-Methyl-N-nitrosoamine and from Methylurea through N-Methyl-N-nitrosourea.
    31. M. Struempel, B. Ondruschka, R. Daute, A. Stark, (2008). Making diazomethane accessible for R&D and industry: generation and direct conversion in a continuous micro-reactor set-up. Green Chem. 10, 41–43.
    32. M Struempel, B. O., A Stark. (2009). Continuous Production of the Diazomethane Precursor N-Methyl-N-nitroso-p-toluenesulfonamide: Batch Optimization and Transfer into a Microreactor Setup. Organic Process Research & Development, 13, 1014-1021.
    33. Wootton, R.C., R. Fortt, and A.J. de Mello, (2002). On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: azo dyes. Lab Chip, 2(1): p. 5-7.

    QR CODE