研究生: |
林柏堯 Lin, Po-Yao |
---|---|
論文名稱: |
高分子黏彈行為對封裝翹曲及溶劑癒合受加馬射線的影響 The Effect of Viscoelastic Behavior of Polymer on Package Warpage and Solvent-Healing of Gamma-Irradiated Polymer |
指導教授: |
李三保
Lee, Sanboh |
口試委員: |
歐陽浩
Ouyang, Hao 黃健朝 Huang, Jian-Chao 章勳明 Zhang, Xun-Ming 王垂堂 Wang, Chuei-Tang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 高分子 、黏彈行為 、固化相依本構行為 、封模底部填充膠 、超薄覆晶封裝體 、有限元素法 、溶劑癒合行為 、擴散 、斷裂和韌性 、裂紋 、輻照效應 |
外文關鍵詞: | viscoelastic behavior, cure-dependent constitutive behavior, molded underfill, solvent healing, fracture and toughness, irradiation effects |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子材料的應用相當廣泛,尤其近年來在電子材料及生醫材料更扮演關鍵的角色,本研究針對高分子黏彈行為對電子封裝翹曲的影響及高分子溶劑癒合行為受加馬射線和次裂紋的影響做深入分析與探討。
在高分子黏彈行為對電子封裝翹曲的影響研究方面,我們針對封模底部填充膠材料做探討;封模底部填充膠(Molded underfill,MUF)為超薄覆晶封裝體(ultra-thin flip chip package)的重要組成,以確保其長期可靠性和結構的強度。然而,MUF在整個封裝製程尤其是在模封成型過程中的固化反應,會對封裝體的翹曲(warpage)產生關鍵性的影響。因此,完整了解MUF的固化相依本構行為(cure-dependent constitutive behavior)行為包括固化動力反應、化學收縮及黏彈行為的應力鬆弛特性是非常重要的。因此,本研究首先分析MUF的固化相依本構行為,分別利用差示掃描量熱分析儀(differential scanning calorimetry,DSC)、壓力–體積–溫度(pressure-volume-temperature,PVT)測試儀和動態機械分析儀(dynamic mechanical analysis,DMA)來建立固化動力模型(curing kinetics model)、獲得化學收縮率(chemical shrinkage)及固化相依黏彈模型(cure-dependent viscoelastic model) ,成功的描述MUF在固化反應的本構行為。其次,進一步利用有限元素法(finite element method)之模擬,並考慮整個MUF模封製程的固化條件、MUF的化學收縮和固化相依黏彈材料模型,成功建立一個新穎的超薄覆晶封裝的翹曲預測模型。封裝體翹曲的預測結果顯示,其與實驗之熱陰影疊紋(thermal shadow moiré)數據有良好一致性。結果也顯示,若僅考慮溫度相依線彈性(temperature-dependent linear elastic)行為的假設作為MUF材料模型,則翹曲預測的準確度會嚴重下降。最後,本研究也針對封裝體的結構包括晶片尺寸及晶片厚度對翹曲影響作探討。結果顯示,封裝體翹曲會隨著晶片尺寸縮小及厚度增加做有效的改善,也成為日後封裝結構設計的重要參考。
另外,在高分子溶劑癒合行為受加馬射線和次裂紋的影響研究方面,我們針對乙醇輔助裂紋癒合聚甲基丙烯酸甲酯(PMMA)材料做探討;PMMA為骨泥(bone cement)生醫材料的重要組成,加馬射線和次裂紋對乙醇輔助裂紋癒合PMMA中扮演關鍵的角色,因而我們進一步進行分析及探討。首先運用Harmon模型分析了乙醇在加馬射線照射下的 PMMA中的質傳現象。本研究加馬射線照射有裂紋的PMMA 及有次裂紋 PMMA都是在高於PMMA相應的玻璃轉化溫度的溫度下進行了乙醇的輔助癒合。分析結果顯示在給定溫度下,裂紋閉合率會遵循修正的Arrhenius 方程式隨加馬射線劑量增加而增加。癒合後的PMMA的斷裂強度在給定的癒合溫度且在短的的癒合時間下,會隨著加馬射線劑量的增加而增加;反之,在長的癒合時間下,斷裂強度會隨著加馬射線劑量的增加而減少。另外,癒合的PMMA 的斷裂強度隨次裂紋數量的增加而增加。這些結果提供了材料結構破壞時,在無任何外部作用情況下的自主癒合過程,也提供了對未來開發可自我癒合的聚合物材料的潛力。
Polymer materials are widely used in recent years, especially in the applications of electronic materials and biomedical materials. For the study of the effect of viscoelastic behavior of polymer on package warpage, we focus on molded undefill. Molded underfill (MUF) is an essential component in ultra-thin flip chip packages to ensure their long-term reliability and mechanical integrity. However, the warpage evolution of package during the curing process of MUF has a critical effect on both the SMT yield and package reliability. Therefore, the present study successfully establishes a novel process modeling approach based on finite element method to predict the final warpage of an ultra-thin package in accordance with the chemical shrinkage and cure-dependent viscoelastic behavior of MUF. In describing the cure-dependent constitutive behavior of the MUF, the chemical shrinkage, curing kinetics and cure-dependent viscoelasticity in the time domain are characterized by the pressure-volume-temperature (PVT) method, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. The predicted package warpage results are shown to be in good agreement with the experimental thermal Shadow Moiré data. It is additionally shown that the accuracy of the warpage predictions is seriously degraded if the mechanical properties of MUF is modeled using a temperature-dependent elastic assumption. Furthermore, the effects of MUF volume change observed by changing the die size and thickness in an ultrathin package are studied using the warpage prediction model. The results indicate that package warpage can be effectively reduced by decreasing the die size and increasing the die thickness.
Regarding the effect of gamma ray and sub-cracks on solvent healing polymer, we focus on the effects of gamma ray and sub-cracks on ethanol-assisted crack healing in Poly(Methylmethacrylate) (PMMA). The transport of ethanol in the gamma-irradiated PMMA is analyzed, using the Harmon model. Both the cracked-gamma-irradiated PMMA and the cracked PMMA with sub-cracks are ethanol-treated at a temperature above the effective glass transition point of the corresponding bulk PMMA. The crack closure rate, which followed the modified Arrhenius equation, increases with increasing gamma ray dose at a given temperature. The fracture strength of the healed PMMA increases with increasing gamma ray dose for short healing time at a given healing temperature, while long healing time leads to the decrease of the fracture strength of the healed PMMA with increasing gamma ray dose. The fracture strength of the healed PMMA increases with increasing number of sub-cracks. These results provide potentially to develop self-healing polymeric materials, in which structural damage can activate an autonomous healing process without any external stimuli.
[1] S. Lee, M. J. Yim, R. N. Master, C. P. Wong, and D. F. Baldwin, “Void Formation Study of Flip Chip in Package Using No-Flow Underfill,” IEEE Tran. Electron. Packag. Manuf., vol. 31, no. 4, p. 297, 2008
[2] K. E. J. Barrett, “Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter,” J. Appl. Polym. Sci., Vol. 11, p. 1617, 1967.
[3] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. Iii. Curing reaction of epoxides with amines,” J. Polym. Sci.: Part A-1, Vol. 8, p. 1357, 1970.
[4] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. iv. curing reaction of polyester fumarate with styrene,” J. Polym. Sci.: Part A-1, Vol. 8, p. 2839, 1970.
[5] M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polym. Eng. Sci., Vol. 13, p. 59, 1973.
[6] M. R. Kamal, “Thermoset characterization for moldability analysis,” Polym. Eng. Sci., Vol. 14, p. 231, 1974.
[7] M. R. Kamal and M. E. Ryan, “The behavior of thermosetting compound in injection molding cavities,” Polym. Eng. Sci., Vol. 20, p. 859, 1980.
[8] J. M. Kenny and A. Trivisan, “Isothermal and dynamic reaction kinetics of high performance epoxy matrices,” Polym. Eng. Sci., Vol. 31, p. 1426, 1991.
[9] T.H. Hsieh, A.C. Su, “Cure behavior of an epoxy–novolac molding compound,” J. Appl. Polym. Sci., vol. 44, p.165, 1992
[10] V.M Gonzalez-Romero, N. Casillas, “Isothermal and temperature programmed kinetic studies of thermosets,” Polym. Eng. Sci. vol. 29, p.295, 1989
[11] R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
[12] A. A. Skordos, and I. K. Partidge, ”Cure kinetics modeling of epoxy resins using a non-parametric numerical procedure,” Polym. Eng. Sci., vol. 41, p. 793, 2001.
[13] A. Bernath , L. Kärger , F. Henning,” Accurate cure modeling for isothermal processing of fast curing epoxy resins”, Polymers, DOI:10.3390/polym8110390, 2016
[14] I.C. Chay, D.J., Plazek, “The physical properties of bisphenol A-based epoxy resins during and after curing,” J. Polym. Sci. Part B, vol. 24, p. 1303, 1986.
[15] Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Huang, “Study of P-V-T-C relation of EMC,” J. Electron. Packag., vol. 124, p. 371, 2002.
[16] K.F. Schoch, J., P.A. Panackal, P.P. Frank, “Real-time measurement of resin shrinkage during cure,” Thermochimica Acta, vol. 417: p. 115, 2004.
[17] M. Haider, P. Hubert, L. Lessard, “Cure shrinkage characterization and modeling of a polyester resin containing low profile additives,” Composites: Part A, vol. 38, p. 994, 2007.
[18] D. U. Shah, P. J. Schubel, “Evaluation of Cure Shrinkage Measurement Techniques for Thermosetting Resins,” Polymer Testing, vol. 29, p. 629, 2010.
[19] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edtion, John Wiley and Sons Inc., New York, 1980.
[20] D. J. Plazek and I. C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network,” J. Polym. Sci.: Part B: Polym. Phys., Vol. 29, p. 17, 1991.
[21] Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci., Vol. 36, p. 2852, 1996.
[22] S. L. Simon, G. B. Mckenna and O. Sindt, “Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation,” J. Appl. Polym. Sci., Vol. 76, p. 495, 2000.
[23] L. J. Ernst, C. van’t Hof, D. G. Yang, and M. S. Kiasat, ”Determination of visco- elastic properties during the curing process of underfill materials,” Proc. Electron. Compon. Technol. Conf., ECTC2000, Las Vegas, 2000, p. 1070.
[24] L. C. Brison and T. S. Gates, Viscoelastic and Aging of Polymer Matrix Composites, Vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
[25] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers, and J. H. J. Janssen, ”Effect of filler concentration of rubbery shear and bulk modulus of molding compound,” Microelectron. Reliab., vol. 47, p. 233, 2007.
[26] M. L. Williams, R. F. Landel, J.D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids”. J. Am. Chem. Soc., vol. 77, p. 3701, 1955.
[27] S. H. Chae, J. H. Zhao, D. R. Edwards, and P. S. Ho, “Characterization of the viscoelasticity of molding compounds in the time domain,” J. Electron. Mater., vol. 39, no. 4, p. 419, 2010.
[28] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Drief, and H. J. L. Bressers, “Modeling of cure-induced warpage of plastic ic packages,” Proc. 5th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst., EuroSimE 2004, Brussels, Belgium, 2004, p. 33.
[29] N. Srikanth, “Warpage analysis of epoxy molded packages using viscoelastic based model,” J. Mater. Sci., vol. 41, no. 12, pp. 3773-3780, 2006.
[30] T. C. Chiu, C. L. Kung, H. W. Huang, and Y. S. Lai, “Effect of curing and chemical aging on warpage – characterization and simulation,” IEEE Trans. Device Mater Rel., vol. 11, no. 2, pp. 339-348, 2011.
[31] P.J. Schubel, N.A. Warrior, C.D. Rudd, “Surface quality prediction of thermoset composite structuresusing geometric simulation tools,” Plastics, Rubber and Composites, vol. 36, p. 428, 2007.
[32] D.A., T., G.J., Pearson, M. Braden, and P.V. Coveney, “Prediction of polymerization shrinkage using molecular modeling,” J. Polym. Sci.: Part B: Polymer Physics, vol. 41, p. 528, 2003.
[33] L. C. Brison and T. S. Gates, “Viscoelastic and Aging of Polymer Matrix Composites,” vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
[34] MATLAB, R2018a, The MathWorks, Inc., 2018.
[35] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” J Optim. Theory Appl., vol. 79, p. 157, 1993.
[36] 洪立群,2004,IC 封裝元件翹曲分析之研究,博士論文,國立成功大學
[37] W. C. Bushko and V. K. Stokes, “The effects of differential mold-surface temperatures on the warpage of packed injection-molded parts,” ANTEC, p. 506~512, 1994
[38] K. Oota and M. Saka, “Cure shrinkage analysis of epoxy molding compound,” Polymer Engineer and Science, vol. 41, p. 1373, 2001.
[39] K. Ninomiya and J. D. Ferry, “Some approximate equations useful in the phenomenological treatment of linear viscoelastic data,” Journal of Colloid Science at Science,” vol. 14, p. 36, 1959.
[40] ANSYS Version 15.0, Ansys Inc., Canonsburg, PA, USA, 2016.
[41] P. Y. Lin, S. B. Lee, “Warpage modeling of ultra-thin packages based on chemical shrinkage and cure-dependent viscoelasticity of molded underfill,” IEEE Trans. Device Mater Rel., vol. 20, p. 67, 2020.
[42] P. Y. Lin, S. B. Lee, “Modeling and characterization of cure-dependent viscoelasticity of molded underfill in ultrathin packages”, IEEE Tran. Comp. Packag. Manuf. Tech., DOI: 10.1109/TCPMT.2020.2991036, 2020.
[43] C. Y. Ni, D. S. Liu, C. Y. Chen, “Procedure for design optimization of a T-cap flip chip package”, Microelectronics Rel., vol. 42, p. 1903, 2002.
[44] E.B. Stukalin, L.H. Cai, N.A. Kumar, L. Leibler, M. Rubinstein, Self-healing of unentangled polymer networks with reversible bond, Macromolecules 46 (2013) 7525-7541.
[45] H. Fischer, Self-repairing materials systems e a dream or a reality? Nat. Sci. 2 (2010) 873-901.
[46] T. Kindt-Larsen, D.B. Smith, J.S. Jensen, Innovations in acrylic bone cement and application equipment, J. Appl. Biomat. 6 (1995) 75-83.
[47] P. Culleton, P.J. Prendergast, D. Taylor, Fatigue failure in the cement mantle of an artificial hip joint, Clin. Mater. 12 (1993) 95-102.
[48] L.D.T. Topoleski, P. Ducheyne, J.M. Cuckler, Microstructural pathway of fracture in poly(methyl methacrylate) bone cement, Biomaterials 14 (1993)1165-1172.
[49] Y.H. Nien, J. Chen, Studies of the mechanical and thermal properties of crosslinked poly(methyl methacrylate-acrylic acid-allylmethacrylate)-modified bond cement, J. Appl. Polym. Sci. 100 (2006) 3727-3732.
[50] A. Muraikami, et al., Rubber-modified bone cement, J. Mater. Sci. 23 (1998) 2029-2036.
[51] J.M. Yang, C.S. Lu, Y.G. Hsu, C.H. Shih, Mechanical properties of acrylic bond cement contacting PMMA-SiO2 hybrid sol-gel material, J. Biomed. Mater. Res. 38 (1997) 143-154.
[52] J.P. Taitsman, Tensile strength of wire-reinforced bone cement and twisted stainless-steel wire, J. Bone Jt. Surg. 59 (1977) 419-425.
[53] A.B. Brochu, S.L. Craig, W.M. Reichert, Self-healing biomaterials, J. Biomed. Mater. Res. Part A 96A (2011) 492-506.
[54] J.D.D. Melo, A.P.C. Barbosa, M.C.B. Costa, G.N. de Melo, Encapsulation of solvent into halloysite nanotubes to promote sell-healing ability in polymers, Adv. Comp. Mater. 23 (2014) 507-519.
[55] C.K. Liu, T.J. Yang, J.S. Shen, S. Lee, Some recent results on crack healing of poly (methyl methacrylate), Eng. Fract. Mech. 75 (2008) 4876-4885.
[56] J.S. Shen, J.P. Harmon, S. Lee, Thermally-induced crack healing in poly (methyl methacrylate), J. Mater. Res. 17 (2002) 1335-1340.
[57] H.C. Hsieh, T.J. Yang, S. Lee, Crack healing in poly (methyl methacrylate) induced by co-solvent of methanol and ethanol, Polymer 42 (2001) 1227-1241.
[58] P.P. Wang, S. Lee, J.P. Harmon, Ethanol-induced crack healing in poly (methyl methacrylate), J. Polym. Sci. (B), Polym. Phys. 327 (1994) 1217-1227.
[59] C.B. Lin, S. Lee, K.S. Liu, Methanol-induced crack in poly (methyl methacrylate), Polym. Eng. Sci. 21 (1990) 1399-1406.
[60] M. Kawagoe, M. Nakanishi, J. Qiu, M. Morita, Growth and healing of a surface crack in poly(methyl methacrylate) under case II diffusion of methanol, Polymer 38 (1997) 5969-5976.
[61] R.P. Wool, K.M. O'Connor, Theory of crack healing in polymers, J. Appl. Phys. 52 (1981) 5953-5963.
[62] Y.H. Kim, R.P. Wool, A theory of healing at a polymer-polymer interface, Macromolecules 16 (1983) 1115-1120.
[63] R.P. Wool, Polymer Interfaces: Structure and Strength, Hanser Publishers, New York, 1995.
[64] S.S. Voyutski, in: H.F. Mark, E.H. Immergut (Eds.), Autohesion and Adhesion of High Polymers, Polymer Rev., vol. 4, Wiley Interscience, New York, 1963 (translated by S. Karganoff from the original edited by V.L. Vakula).
[65] C.C. Yu, C.B. Lin, S. Lee, Theory for the rate of crack closure, J. Appl. Phys. 78 (1995) 212-216.
[66] T. Alfrey Jr., E.F. Gurnee, W.G. Llyod, Diffusion in glassy polymers, J. Polym. Sci. C. Polym. Symp. 12 (1996) 249-261.
[67] J. Crank, The Mathematics of Diffusion, second ed., Oxford University Press, 1975.
[68] A.H. Windle, in: J. Comyn (Ed.), Case II Sorption in Polymer Permeability, Elsevier Appl. Sci., London, 1985, pp. 75-118.
[69] A. Peterlin, Diffusion with discontinuous swelling III. Type II diffusion as a particular solution of the conventional diffusion equation, J. Res. Natl. Bur. Stand. A Phys. Chem. 81A (1997) 243-250.
[70] C.Y. Hui, K.C. Wu, R.C. Lasky, E.J. Kramer, Case II diffusion in polymers.I. Transient swelling, J. Appl. Phys. 61 (1987) 5129-5136.
[71] C.Y. Hui, K.C. Wu, R.C. Lasky, E.J. Kramer, Case II diffusion in polymers.II. Steady-state front motion, J. Appl. Phys. 61 (1987) 5137-5149.
[72] T.T. Wang, T.K. Kwei, Diffusion in glassy polymers. reexamination of vapor sorption data, Macromolecules 6 (1973) 919-921.
[73] H.L. Frisch, T.T. Wang, T.K. Kwei, Diffusion in glassy polymers.II, J. Polym. Sci. 7 (A-2) (1969) 879-881.
[74] T.T. Wang, T.K. Kwei, H.L. Frisch, Diffusion in glassy polymers.III, J. Polym. Sci. 7 (A-2) (1969) 2019-2028.
[75] T.K. Kwei, H.M. Zupko, Diffusion in glassy polymers, J. Polym. Sci. 17 (A-2) (1969) 867-877.
[76] J.P. Harmon, S. Lee, J.C.M. Li, Methanol transport in PMMA: the effect of mechanical deformation, J. Polym. Sci. Part A: Polym. Chem. 25 (1987) 3215-3229.
[77] J.P. Harmon, S. Lee, J.C.M. Li, Anisotroptic methanol transport in PMMA after mechanical deformation, Polymer 29 (1988) 1221-1226.
[78] C.K. Liu, C.T. Hu, S. Lee, Effect of compression and thickness on acetone transport in polycarbonate, Polym. Eng. Sci. 45 (2005) 687-693.
[79] C.S. Tsai, S. Lee, T. Nguyen, Transport kinetics of methanol in hydroxyethyl methacrylate homopolymer and its copolymer, J. Mater. Res. 19 (2004) 3359-3363.
[80] L.A. Wall, D.W. Brown, Gamma irradiation of poly (methyl methacrylate) and polystyrene, J. Phys. Chem. 61 (1957) 129-136.
[81] H. Kudoh, Application of target theory for the radiation degradation of mechanical properties of polymer materials, J. Mater. Sci. Lett. 15 (1996) 666-669.
[82] A.C. Ouano, D.E. Johnson, B. Dawson, L.A. Pederson, Chain scission efficiency of some polymers in gamma-radiation, J. Polym. Sci. A: Polym. Chem. 12 (1976) 701-711.
[83] H.N. Subrahmanyam, S.V. Subrahmanyam, Thermal expansion of irradiated poly (methyl methacrylate), Polymer 28 (1987) 1331-1333.
[84] K.P. Lu, S. Lee, C.P. Cheng, Hardness of irradiated poly (methyl methacrylate) at elevated temperatures, J. Appl. Phys. 90 (2001) 1745-1749.
[85] K.P. Lu, S. Lee, C.P. Cheng, Transmittance in irradiated poly(methyl methacrylate) at elevated temperatures, J. Appl. Phys. 88 (2000) 5022-5027.
[86] J.S. Peng, L.J. Ming, Y.S. Lin, S. Lee, ERR study of radical annihilation kinetics of g-Ray-irradiated acrylic (PMMA) at elevated temperatures, Polymer 52 (2011) 6090-6096.
[87] W.L. Wang, J.R. Chen, S. Lee, Solvent-induced stresses in glassy polymer: elastic model, J. Mater. Res. 14 (1999) 4111-4118.
[88] http://biomatemucan.blogspot.com/2016/01/bone-cement.html