簡易檢索 / 詳目顯示

研究生: 林柏堯
Lin, Po-Yao
論文名稱: 高分子黏彈行為對封裝翹曲及溶劑癒合受加馬射線的影響
The Effect of Viscoelastic Behavior of Polymer on Package Warpage and Solvent-Healing of Gamma-Irradiated Polymer
指導教授: 李三保
Lee, Sanboh
口試委員: 歐陽浩
Ouyang, Hao
黃健朝
Huang, Jian-Chao
章勳明
Zhang, Xun-Ming
王垂堂
Wang, Chuei-Tang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 高分子黏彈行為固化相依本構行為封模底部填充膠超薄覆晶封裝體有限元素法溶劑癒合行為擴散斷裂和韌性裂紋輻照效應
外文關鍵詞: viscoelastic behavior, cure-dependent constitutive behavior, molded underfill, solvent healing, fracture and toughness, irradiation effects
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子材料的應用相當廣泛,尤其近年來在電子材料及生醫材料更扮演關鍵的角色,本研究針對高分子黏彈行為對電子封裝翹曲的影響及高分子溶劑癒合行為受加馬射線和次裂紋的影響做深入分析與探討。
    在高分子黏彈行為對電子封裝翹曲的影響研究方面,我們針對封模底部填充膠材料做探討;封模底部填充膠(Molded underfill,MUF)為超薄覆晶封裝體(ultra-thin flip chip package)的重要組成,以確保其長期可靠性和結構的強度。然而,MUF在整個封裝製程尤其是在模封成型過程中的固化反應,會對封裝體的翹曲(warpage)產生關鍵性的影響。因此,完整了解MUF的固化相依本構行為(cure-dependent constitutive behavior)行為包括固化動力反應、化學收縮及黏彈行為的應力鬆弛特性是非常重要的。因此,本研究首先分析MUF的固化相依本構行為,分別利用差示掃描量熱分析儀(differential scanning calorimetry,DSC)、壓力–體積–溫度(pressure-volume-temperature,PVT)測試儀和動態機械分析儀(dynamic mechanical analysis,DMA)來建立固化動力模型(curing kinetics model)、獲得化學收縮率(chemical shrinkage)及固化相依黏彈模型(cure-dependent viscoelastic model) ,成功的描述MUF在固化反應的本構行為。其次,進一步利用有限元素法(finite element method)之模擬,並考慮整個MUF模封製程的固化條件、MUF的化學收縮和固化相依黏彈材料模型,成功建立一個新穎的超薄覆晶封裝的翹曲預測模型。封裝體翹曲的預測結果顯示,其與實驗之熱陰影疊紋(thermal shadow moiré)數據有良好一致性。結果也顯示,若僅考慮溫度相依線彈性(temperature-dependent linear elastic)行為的假設作為MUF材料模型,則翹曲預測的準確度會嚴重下降。最後,本研究也針對封裝體的結構包括晶片尺寸及晶片厚度對翹曲影響作探討。結果顯示,封裝體翹曲會隨著晶片尺寸縮小及厚度增加做有效的改善,也成為日後封裝結構設計的重要參考。
    另外,在高分子溶劑癒合行為受加馬射線和次裂紋的影響研究方面,我們針對乙醇輔助裂紋癒合聚甲基丙烯酸甲酯(PMMA)材料做探討;PMMA為骨泥(bone cement)生醫材料的重要組成,加馬射線和次裂紋對乙醇輔助裂紋癒合PMMA中扮演關鍵的角色,因而我們進一步進行分析及探討。首先運用Harmon模型分析了乙醇在加馬射線照射下的 PMMA中的質傳現象。本研究加馬射線照射有裂紋的PMMA 及有次裂紋 PMMA都是在高於PMMA相應的玻璃轉化溫度的溫度下進行了乙醇的輔助癒合。分析結果顯示在給定溫度下,裂紋閉合率會遵循修正的Arrhenius 方程式隨加馬射線劑量增加而增加。癒合後的PMMA的斷裂強度在給定的癒合溫度且在短的的癒合時間下,會隨著加馬射線劑量的增加而增加;反之,在長的癒合時間下,斷裂強度會隨著加馬射線劑量的增加而減少。另外,癒合的PMMA 的斷裂強度隨次裂紋數量的增加而增加。這些結果提供了材料結構破壞時,在無任何外部作用情況下的自主癒合過程,也提供了對未來開發可自我癒合的聚合物材料的潛力。


    Polymer materials are widely used in recent years, especially in the applications of electronic materials and biomedical materials. For the study of the effect of viscoelastic behavior of polymer on package warpage, we focus on molded undefill. Molded underfill (MUF) is an essential component in ultra-thin flip chip packages to ensure their long-term reliability and mechanical integrity. However, the warpage evolution of package during the curing process of MUF has a critical effect on both the SMT yield and package reliability. Therefore, the present study successfully establishes a novel process modeling approach based on finite element method to predict the final warpage of an ultra-thin package in accordance with the chemical shrinkage and cure-dependent viscoelastic behavior of MUF. In describing the cure-dependent constitutive behavior of the MUF, the chemical shrinkage, curing kinetics and cure-dependent viscoelasticity in the time domain are characterized by the pressure-volume-temperature (PVT) method, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. The predicted package warpage results are shown to be in good agreement with the experimental thermal Shadow Moiré data. It is additionally shown that the accuracy of the warpage predictions is seriously degraded if the mechanical properties of MUF is modeled using a temperature-dependent elastic assumption. Furthermore, the effects of MUF volume change observed by changing the die size and thickness in an ultrathin package are studied using the warpage prediction model. The results indicate that package warpage can be effectively reduced by decreasing the die size and increasing the die thickness.
    Regarding the effect of gamma ray and sub-cracks on solvent healing polymer, we focus on the effects of gamma ray and sub-cracks on ethanol-assisted crack healing in Poly(Methylmethacrylate) (PMMA). The transport of ethanol in the gamma-irradiated PMMA is analyzed, using the Harmon model. Both the cracked-gamma-irradiated PMMA and the cracked PMMA with sub-cracks are ethanol-treated at a temperature above the effective glass transition point of the corresponding bulk PMMA. The crack closure rate, which followed the modified Arrhenius equation, increases with increasing gamma ray dose at a given temperature. The fracture strength of the healed PMMA increases with increasing gamma ray dose for short healing time at a given healing temperature, while long healing time leads to the decrease of the fracture strength of the healed PMMA with increasing gamma ray dose. The fracture strength of the healed PMMA increases with increasing number of sub-cracks. These results provide potentially to develop self-healing polymeric materials, in which structural damage can activate an autonomous healing process without any external stimuli.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1 封模底部填充膠在電子封裝應用之研究 1 1.1.1 覆晶封裝技術簡介 1 1.1.2 研究動機與方法 4 1.1.3 文獻回顧 6 1.1.3.1 固化動力學 6 1.1.3.2 固化反應體積收縮行為 8 1.1.3.3 黏彈性行為 9 1.1.3.4 翹曲與應力分析 10 1.1.3.5 研究目的 12 1.2 乙醇輔助裂紋癒合PMMA之研究 12 1.2.1 文獻回顧 12 1.2.2 研究方法 14 1.3 本文架構 14 第二章 高分子固化本構行為理論基礎 17 2.1 熱固性高分子材料的固化反應 17 2.1.1 固化動力學模型 18 2.1.2 固化反應化學收縮行為 20 2.2 高分子材料之線黏彈性行為 23 2.2.1 黏彈性材料與時間相關之行為及材料機械試驗 24 2.2.2 線黏彈性材料之基本數學模型 26 2.2.3 溫度效應及時間-溫度疊加原理 29 2.2.4 時間-固化重疊原理 31 2.2.5 固化相依黏彈行為及二元平移因子 32 第三章 MUF固化相依本構行為分析實驗及其材料模型的建立 33 3.1 DSC實驗與固化動力學模型的建立 33 3.1.1 DSC動態分析實驗 34 3.1.2 固化動力學模型的建立 35 3.2 PVT實驗與化學收縮率分析 38 3.2.1 PVT實驗流程 38 3.2.2 化學收縮率量測結果 40 3.3 DMA實驗與固化相依黏彈材料模型的建立 44 3.3.1 DMA動態模數及應力鬆弛實驗方法 45 3.3.1.1 動態模數 45 3.3.1.2 DMA應力鬆弛實驗方法 46 3.3.2 MUF時域線黏彈性行為實驗分析 46 3.3.2.1 DMA時域應力鬆弛實驗 46 3.3.2.2 主曲線之建構與時間-溫度平移因子 48 3.3.2.3 主曲線數學模型之建立 49 3.3.2.4 MUF與EMC、Underfill線黏彈性行為之比較 51 3.3.3 MUF固化相依線黏彈材料模型之建立 53 3.3.3.1 時間-固化平移因子實驗分析 53 3.3.3.2 固化相依線黏彈材料模型之建立 57 第四章 有限元素模型的建立及封裝製程翹曲模擬 61 4.1 有限元素模型的建立 61 4.2 材料性質的建立 63 4.3 封裝製程的翹曲模擬 65 4.3.1 初始應變 66 4.3.2 溫度負載 68 第五章 翹曲預測與陰影疊紋實驗驗證及參數化分析 71 5.1 翹曲預測結果與分析 71 5.2 陰影疊紋實驗驗證 72 5.2.1 陰影疊紋實驗 72 5.2.2 翹曲預測驗證結果 74 5.3 線彈性模型翹曲預測之結果與比較 76 5.4 封裝結構參數化分析 78 5.4.1 裸晶的尺寸大小的效應 78 5.4.2 裸晶的厚度的效應 79 第六章 乙醇輔助裂紋癒合PMMA之實驗方法 81 6.1 試件製備 81 6.2 乙醇吸附於PMMA分析 82 6.3 裂紋癒合分析 83 6.4 斷裂強度量測 83 6.5 玻璃轉化溫度量測 83 第七章 γ射線和次裂紋對乙醇癒合PMMA實驗結果與討論 84 7.1 乙醇的質傳現象 84 7.2 裂紋閉合率 89 7.3 機械強度的恢復 92 7.4 玻璃轉化溫度的影響 96 第八章 結論與未來研究方向 98 8.1 封模底部填充膠之固化相依本構行為及翹曲模擬研究 98 8.1.1 結論 98 8.1.2 未來研究方向 99 8.2 γ射線及次裂紋對乙醇輔助裂紋癒合PMMA的影響研究 100 8.2.1 結論 100 8.2.2 未來研究方向 100 參考文獻 101 附錄A 翹曲預測模型之ANSYS程式節錄 107 附錄B Hammon Model擬合的Maple程式節錄 109

    [1] S. Lee, M. J. Yim, R. N. Master, C. P. Wong, and D. F. Baldwin, “Void Formation Study of Flip Chip in Package Using No-Flow Underfill,” IEEE Tran. Electron. Packag. Manuf., vol. 31, no. 4, p. 297, 2008
    [2] K. E. J. Barrett, “Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter,” J. Appl. Polym. Sci., Vol. 11, p. 1617, 1967.
    [3] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. Iii. Curing reaction of epoxides with amines,” J. Polym. Sci.: Part A-1, Vol. 8, p. 1357, 1970.
    [4] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. iv. curing reaction of polyester fumarate with styrene,” J. Polym. Sci.: Part A-1, Vol. 8, p. 2839, 1970.
    [5] M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polym. Eng. Sci., Vol. 13, p. 59, 1973.
    [6] M. R. Kamal, “Thermoset characterization for moldability analysis,” Polym. Eng. Sci., Vol. 14, p. 231, 1974.
    [7] M. R. Kamal and M. E. Ryan, “The behavior of thermosetting compound in injection molding cavities,” Polym. Eng. Sci., Vol. 20, p. 859, 1980.
    [8] J. M. Kenny and A. Trivisan, “Isothermal and dynamic reaction kinetics of high performance epoxy matrices,” Polym. Eng. Sci., Vol. 31, p. 1426, 1991.
    [9] T.H. Hsieh, A.C. Su, “Cure behavior of an epoxy–novolac molding compound,” J. Appl. Polym. Sci., vol. 44, p.165, 1992
    [10] V.M Gonzalez-Romero, N. Casillas, “Isothermal and temperature programmed kinetic studies of thermosets,” Polym. Eng. Sci. vol. 29, p.295, 1989
    [11] R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
    [12] A. A. Skordos, and I. K. Partidge, ”Cure kinetics modeling of epoxy resins using a non-parametric numerical procedure,” Polym. Eng. Sci., vol. 41, p. 793, 2001.
    [13] A. Bernath , L. Kärger , F. Henning,” Accurate cure modeling for isothermal processing of fast curing epoxy resins”, Polymers, DOI:10.3390/polym8110390, 2016
    [14] I.C. Chay, D.J., Plazek, “The physical properties of bisphenol A-based epoxy resins during and after curing,” J. Polym. Sci. Part B, vol. 24, p. 1303, 1986.
    [15] Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Huang, “Study of P-V-T-C relation of EMC,” J. Electron. Packag., vol. 124, p. 371, 2002.
    [16] K.F. Schoch, J., P.A. Panackal, P.P. Frank, “Real-time measurement of resin shrinkage during cure,” Thermochimica Acta, vol. 417: p. 115, 2004.
    [17] M. Haider, P. Hubert, L. Lessard, “Cure shrinkage characterization and modeling of a polyester resin containing low profile additives,” Composites: Part A, vol. 38, p. 994, 2007.
    [18] D. U. Shah, P. J. Schubel, “Evaluation of Cure Shrinkage Measurement Techniques for Thermosetting Resins,” Polymer Testing, vol. 29, p. 629, 2010.
    [19] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edtion, John Wiley and Sons Inc., New York, 1980.
    [20] D. J. Plazek and I. C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network,” J. Polym. Sci.: Part B: Polym. Phys., Vol. 29, p. 17, 1991.
    [21] Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci., Vol. 36, p. 2852, 1996.
    [22] S. L. Simon, G. B. Mckenna and O. Sindt, “Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation,” J. Appl. Polym. Sci., Vol. 76, p. 495, 2000.
    [23] L. J. Ernst, C. van’t Hof, D. G. Yang, and M. S. Kiasat, ”Determination of visco- elastic properties during the curing process of underfill materials,” Proc. Electron. Compon. Technol. Conf., ECTC2000, Las Vegas, 2000, p. 1070.
    [24] L. C. Brison and T. S. Gates, Viscoelastic and Aging of Polymer Matrix Composites, Vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
    [25] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers, and J. H. J. Janssen, ”Effect of filler concentration of rubbery shear and bulk modulus of molding compound,” Microelectron. Reliab., vol. 47, p. 233, 2007.
    [26] M. L. Williams, R. F. Landel, J.D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids”. J. Am. Chem. Soc., vol. 77, p. 3701, 1955.
    [27] S. H. Chae, J. H. Zhao, D. R. Edwards, and P. S. Ho, “Characterization of the viscoelasticity of molding compounds in the time domain,” J. Electron. Mater., vol. 39, no. 4, p. 419, 2010.
    [28] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Drief, and H. J. L. Bressers, “Modeling of cure-induced warpage of plastic ic packages,” Proc. 5th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst., EuroSimE 2004, Brussels, Belgium, 2004, p. 33.
    [29] N. Srikanth, “Warpage analysis of epoxy molded packages using viscoelastic based model,” J. Mater. Sci., vol. 41, no. 12, pp. 3773-3780, 2006.
    [30] T. C. Chiu, C. L. Kung, H. W. Huang, and Y. S. Lai, “Effect of curing and chemical aging on warpage – characterization and simulation,” IEEE Trans. Device Mater Rel., vol. 11, no. 2, pp. 339-348, 2011.
    [31] P.J. Schubel, N.A. Warrior, C.D. Rudd, “Surface quality prediction of thermoset composite structuresusing geometric simulation tools,” Plastics, Rubber and Composites, vol. 36, p. 428, 2007.
    [32] D.A., T., G.J., Pearson, M. Braden, and P.V. Coveney, “Prediction of polymerization shrinkage using molecular modeling,” J. Polym. Sci.: Part B: Polymer Physics, vol. 41, p. 528, 2003.
    [33] L. C. Brison and T. S. Gates, “Viscoelastic and Aging of Polymer Matrix Composites,” vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
    [34] MATLAB, R2018a, The MathWorks, Inc., 2018.
    [35] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” J Optim. Theory Appl., vol. 79, p. 157, 1993.
    [36] 洪立群,2004,IC 封裝元件翹曲分析之研究,博士論文,國立成功大學
    [37] W. C. Bushko and V. K. Stokes, “The effects of differential mold-surface temperatures on the warpage of packed injection-molded parts,” ANTEC, p. 506~512, 1994
    [38] K. Oota and M. Saka, “Cure shrinkage analysis of epoxy molding compound,” Polymer Engineer and Science, vol. 41, p. 1373, 2001.
    [39] K. Ninomiya and J. D. Ferry, “Some approximate equations useful in the phenomenological treatment of linear viscoelastic data,” Journal of Colloid Science at Science,” vol. 14, p. 36, 1959.
    [40] ANSYS Version 15.0, Ansys Inc., Canonsburg, PA, USA, 2016.
    [41] P. Y. Lin, S. B. Lee, “Warpage modeling of ultra-thin packages based on chemical shrinkage and cure-dependent viscoelasticity of molded underfill,” IEEE Trans. Device Mater Rel., vol. 20, p. 67, 2020.
    [42] P. Y. Lin, S. B. Lee, “Modeling and characterization of cure-dependent viscoelasticity of molded underfill in ultrathin packages”, IEEE Tran. Comp. Packag. Manuf. Tech., DOI: 10.1109/TCPMT.2020.2991036, 2020.
    [43] C. Y. Ni, D. S. Liu, C. Y. Chen, “Procedure for design optimization of a T-cap flip chip package”, Microelectronics Rel., vol. 42, p. 1903, 2002.
    [44] E.B. Stukalin, L.H. Cai, N.A. Kumar, L. Leibler, M. Rubinstein, Self-healing of unentangled polymer networks with reversible bond, Macromolecules 46 (2013) 7525-7541.
    [45] H. Fischer, Self-repairing materials systems e a dream or a reality? Nat. Sci. 2 (2010) 873-901.
    [46] T. Kindt-Larsen, D.B. Smith, J.S. Jensen, Innovations in acrylic bone cement and application equipment, J. Appl. Biomat. 6 (1995) 75-83.
    [47] P. Culleton, P.J. Prendergast, D. Taylor, Fatigue failure in the cement mantle of an artificial hip joint, Clin. Mater. 12 (1993) 95-102.
    [48] L.D.T. Topoleski, P. Ducheyne, J.M. Cuckler, Microstructural pathway of fracture in poly(methyl methacrylate) bone cement, Biomaterials 14 (1993)1165-1172.
    [49] Y.H. Nien, J. Chen, Studies of the mechanical and thermal properties of crosslinked poly(methyl methacrylate-acrylic acid-allylmethacrylate)-modified bond cement, J. Appl. Polym. Sci. 100 (2006) 3727-3732.
    [50] A. Muraikami, et al., Rubber-modified bone cement, J. Mater. Sci. 23 (1998) 2029-2036.
    [51] J.M. Yang, C.S. Lu, Y.G. Hsu, C.H. Shih, Mechanical properties of acrylic bond cement contacting PMMA-SiO2 hybrid sol-gel material, J. Biomed. Mater. Res. 38 (1997) 143-154.
    [52] J.P. Taitsman, Tensile strength of wire-reinforced bone cement and twisted stainless-steel wire, J. Bone Jt. Surg. 59 (1977) 419-425.
    [53] A.B. Brochu, S.L. Craig, W.M. Reichert, Self-healing biomaterials, J. Biomed. Mater. Res. Part A 96A (2011) 492-506.
    [54] J.D.D. Melo, A.P.C. Barbosa, M.C.B. Costa, G.N. de Melo, Encapsulation of solvent into halloysite nanotubes to promote sell-healing ability in polymers, Adv. Comp. Mater. 23 (2014) 507-519.
    [55] C.K. Liu, T.J. Yang, J.S. Shen, S. Lee, Some recent results on crack healing of poly (methyl methacrylate), Eng. Fract. Mech. 75 (2008) 4876-4885.
    [56] J.S. Shen, J.P. Harmon, S. Lee, Thermally-induced crack healing in poly (methyl methacrylate), J. Mater. Res. 17 (2002) 1335-1340.
    [57] H.C. Hsieh, T.J. Yang, S. Lee, Crack healing in poly (methyl methacrylate) induced by co-solvent of methanol and ethanol, Polymer 42 (2001) 1227-1241.
    [58] P.P. Wang, S. Lee, J.P. Harmon, Ethanol-induced crack healing in poly (methyl methacrylate), J. Polym. Sci. (B), Polym. Phys. 327 (1994) 1217-1227.
    [59] C.B. Lin, S. Lee, K.S. Liu, Methanol-induced crack in poly (methyl methacrylate), Polym. Eng. Sci. 21 (1990) 1399-1406.
    [60] M. Kawagoe, M. Nakanishi, J. Qiu, M. Morita, Growth and healing of a surface crack in poly(methyl methacrylate) under case II diffusion of methanol, Polymer 38 (1997) 5969-5976.
    [61] R.P. Wool, K.M. O'Connor, Theory of crack healing in polymers, J. Appl. Phys. 52 (1981) 5953-5963.
    [62] Y.H. Kim, R.P. Wool, A theory of healing at a polymer-polymer interface, Macromolecules 16 (1983) 1115-1120.
    [63] R.P. Wool, Polymer Interfaces: Structure and Strength, Hanser Publishers, New York, 1995.
    [64] S.S. Voyutski, in: H.F. Mark, E.H. Immergut (Eds.), Autohesion and Adhesion of High Polymers, Polymer Rev., vol. 4, Wiley Interscience, New York, 1963 (translated by S. Karganoff from the original edited by V.L. Vakula).
    [65] C.C. Yu, C.B. Lin, S. Lee, Theory for the rate of crack closure, J. Appl. Phys. 78 (1995) 212-216.
    [66] T. Alfrey Jr., E.F. Gurnee, W.G. Llyod, Diffusion in glassy polymers, J. Polym. Sci. C. Polym. Symp. 12 (1996) 249-261.
    [67] J. Crank, The Mathematics of Diffusion, second ed., Oxford University Press, 1975.
    [68] A.H. Windle, in: J. Comyn (Ed.), Case II Sorption in Polymer Permeability, Elsevier Appl. Sci., London, 1985, pp. 75-118.
    [69] A. Peterlin, Diffusion with discontinuous swelling III. Type II diffusion as a particular solution of the conventional diffusion equation, J. Res. Natl. Bur. Stand. A Phys. Chem. 81A (1997) 243-250.
    [70] C.Y. Hui, K.C. Wu, R.C. Lasky, E.J. Kramer, Case II diffusion in polymers.I. Transient swelling, J. Appl. Phys. 61 (1987) 5129-5136.
    [71] C.Y. Hui, K.C. Wu, R.C. Lasky, E.J. Kramer, Case II diffusion in polymers.II. Steady-state front motion, J. Appl. Phys. 61 (1987) 5137-5149.
    [72] T.T. Wang, T.K. Kwei, Diffusion in glassy polymers. reexamination of vapor sorption data, Macromolecules 6 (1973) 919-921.
    [73] H.L. Frisch, T.T. Wang, T.K. Kwei, Diffusion in glassy polymers.II, J. Polym. Sci. 7 (A-2) (1969) 879-881.
    [74] T.T. Wang, T.K. Kwei, H.L. Frisch, Diffusion in glassy polymers.III, J. Polym. Sci. 7 (A-2) (1969) 2019-2028.
    [75] T.K. Kwei, H.M. Zupko, Diffusion in glassy polymers, J. Polym. Sci. 17 (A-2) (1969) 867-877.
    [76] J.P. Harmon, S. Lee, J.C.M. Li, Methanol transport in PMMA: the effect of mechanical deformation, J. Polym. Sci. Part A: Polym. Chem. 25 (1987) 3215-3229.
    [77] J.P. Harmon, S. Lee, J.C.M. Li, Anisotroptic methanol transport in PMMA after mechanical deformation, Polymer 29 (1988) 1221-1226.
    [78] C.K. Liu, C.T. Hu, S. Lee, Effect of compression and thickness on acetone transport in polycarbonate, Polym. Eng. Sci. 45 (2005) 687-693.
    [79] C.S. Tsai, S. Lee, T. Nguyen, Transport kinetics of methanol in hydroxyethyl methacrylate homopolymer and its copolymer, J. Mater. Res. 19 (2004) 3359-3363.
    [80] L.A. Wall, D.W. Brown, Gamma irradiation of poly (methyl methacrylate) and polystyrene, J. Phys. Chem. 61 (1957) 129-136.
    [81] H. Kudoh, Application of target theory for the radiation degradation of mechanical properties of polymer materials, J. Mater. Sci. Lett. 15 (1996) 666-669.
    [82] A.C. Ouano, D.E. Johnson, B. Dawson, L.A. Pederson, Chain scission efficiency of some polymers in gamma-radiation, J. Polym. Sci. A: Polym. Chem. 12 (1976) 701-711.
    [83] H.N. Subrahmanyam, S.V. Subrahmanyam, Thermal expansion of irradiated poly (methyl methacrylate), Polymer 28 (1987) 1331-1333.
    [84] K.P. Lu, S. Lee, C.P. Cheng, Hardness of irradiated poly (methyl methacrylate) at elevated temperatures, J. Appl. Phys. 90 (2001) 1745-1749.
    [85] K.P. Lu, S. Lee, C.P. Cheng, Transmittance in irradiated poly(methyl methacrylate) at elevated temperatures, J. Appl. Phys. 88 (2000) 5022-5027.
    [86] J.S. Peng, L.J. Ming, Y.S. Lin, S. Lee, ERR study of radical annihilation kinetics of g-Ray-irradiated acrylic (PMMA) at elevated temperatures, Polymer 52 (2011) 6090-6096.
    [87] W.L. Wang, J.R. Chen, S. Lee, Solvent-induced stresses in glassy polymer: elastic model, J. Mater. Res. 14 (1999) 4111-4118.
    [88] http://biomatemucan.blogspot.com/2016/01/bone-cement.html

    QR CODE