簡易檢索 / 詳目顯示

研究生: 謝宗育
Hsieh, Tzung-Yu
論文名稱: 兩個不同場景下之車輛驗證系統
Vehicle Verification From Two Different Views
指導教授: 黃仲陵
Huang, Chung-Lin
口試委員: 黃仲陵
Huang, Chung-Lin
林信鋒
Lin, Shinfeng
張意政
Chang, I-Cheng
施皇嘉
Shih, Huang-Chia
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: 車輛驗證不同場景
外文關鍵詞: Vehicle Verification, Different Views
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們實現了一個跨攝影機車輛辨識系統,此系統主要是利用embedding的概念轉換車輛特徵進而加以辨識,這種embedding出來的特徵向量特性是在跨攝影機辨識時,並不屬於直接匹配而是間接特徵匹配的方式。這種間接特徵匹配的優點在於跨攝影機的車輛辨識時,我們可以有效的克服不同攝影機下,因照射視角的不同所帶來車輛外觀上的差異,以及不同的照射區域所造成顏色亮度的不同。最後我們在實驗上會針對不同狀態進行測試以證明此系統的穩定度。
    首先我們先利用背景相減法將影片中所出現的車輛視為前景萃取出車輛前景區域,接著對此區域內的車輛前景作條件式的型態學運算將前景中破碎區域填補起來,接下來針對此車輛位置區域做運算時,我們必須把擷取出來的車輛區域做調整,這樣才能確保車輛行駛到畫面不同區域時,擷取出來的車輛圖片都能夠歸一到同樣的中心。獲得車輛前景圖片之後,edge和color的特徵都會被萃取出來,進而利用各個特徵之間的距離比對產生一組distance feature matrix。Distance feature matrix主要的用途是用於訓練出各個攝影機下的example vehicle,得到example vehicle之後,會再使用一次特徵距離運算,但這次只針對example vehicle做特徵距離運算,最後我們會得到另一種矩陣 – embedding feature matrix。Embedding feature matrix的用途是訓練辨識時所需要的SVM分類器。最後,車輛辨識系統的辨識結果即為SVM分類的輸出結果。在實驗上我們拍攝現實生活中的道路場景去衡量此車輛辨識系統的準確性,經過實驗的結果,可以確定我們的系統可達到相當高的正確率。


    In this paper, we implemented a vehicle verification system, which mainly use the concept of embedding to convert the vehicle's feature and then identify this vehicle. In addition to characteristics, the method for matching vehicle objects across cameras in this thesis is indirectly. The advantage of indirectly matching vehicle objects is to overcome the variations of size, aspect, and illumination obtained from cameras. Finally, we will experimentally test for different states to prove the stability of this system.
    First, we use background subtraction to extract the vehicle (which appear in the video) as the foreground region, and then we used the conditional morphological operations to fill up the broken region which is in the foreground. We do some operations for the vehicle location of this region, however, we must adjust the vehicle region which is be retrieved by us. This way can ensure that when the car drove to different region, the images are retrieved out of the vehicle can be normalized to the same center. After we obtained the vehicles foreground image, we can get the edge and color features, and then we contrast the distance between this features, and we can produce a set of distance feature matrix. Distance feature matrix is primarily intended to train example vehicles. After when we get example vehicle, we used these example vehicle as our basis for robust distance measure operation, and finally we get embedding feature matrix. The embedding feature matrix is used to train the SVM classifier which is used to identify. In the experiment, we take a video in the road scenarios in real life to measure the accuracy of vehicle identification system. According to the experimental results, we can determine that our systems can achieve very high accuracy.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 3 1.3 系統概要 5 1.4 論文架構 11 第二章 單一攝影機下的前處理以及特徵萃取 12 2.1 前景萃取 12 2.1.1 背景相減法 13 2.1.2 陰影去除 16 2.1.3 雜訊消除 17 2.1.4 大小濾波器 19 2.2 條件式的形態學運算 19 第三章 特徵抽取及相似距離運算 23 3.1 邊緣距離的測量 23 3.1.1 Canny Edge 23 3.1.2 車輛前景影像調整 27 3.1.3 Robust Edge Distance Measure 29 3.2 Color Distance Measure 31 3.2.1 Color Histogram 31 3.2.2 Bhattacharyya Distance 32 第四章 車輛辨識 33 4.1 找出範例車輛對 33 4.1.1 Distance Feature Matrix 33 4.1.2 Principle Component Analysis 36 4.2 車輛辨識 39 4.2.1 Embedding 40 4.2.2 SVM Training 41 第五章 實驗結果 44 5.1 實驗環境 44 5.2 實驗結果 46 第六章 結論與未來展望 57 參考文獻 58

    [1] Kamat, Varsha, and Ganesan, “An Efficient Implementation of the Hough Transform for Detecting Vehicle License Plate Using DSP’S,” Proceedings of Real-Time Technology and Application, pp.58-59, 1995.
    [2] L . Lee, R. Romano, and G. Stein, “Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame,” IEEE Trans. Pattern Analysis and Machine Intelligence, 22(8), pp.758-768, Aug 2000.
    [3] S. Khan and M. Shah, “Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View”. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(10), pp. 1355-1360, Oct. 2003.
    [4] Liang-Jia Zhu; Jenq-Neng Hwang and Hsu-Yung Cheng, “Tracking of multiple objects across multiple cameras with overlapping and non-overlapping views” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium, pp. 1056 - 1060, 2009.
    [5] John Canny, “A computational approach to edge detection”. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6), pp.679–698, Nov. 1986.
    [6] V. Kettnaker and R. Zabih, “Bayesian Multi-camera Surveillance,” Computer Vision and Pattern Recognition, 1999, IEEE Computer Society Conference, 1999.
    [7] F. Porikli and A. Divakaran, “Multi-Camera Calibration, Object Tracking and Query Generation,” Multimedia and Expo, 2003.ICME '03. Proceedings. 2003 International Conference, pp. I - 653-6 vol.1, Jul. 2003.
    [8] J. Black, T. Ellis, and D. Makris, “Wide Area Surveilaance with a Multi-Camera Network,” In Proc. IDSS-04 Intelligent Distributed Surveillance Systems, pp. 21-25, 2003.
    [9] O. Javed, K. Shafique, and M. Shah, “Appearance modeling for tracking in multiple non-overlapping cameras.” Computer Vision and Pattern Recognition, 2005, CVPR 200, IEEE Computer Society Conference, pp. 26 - 33 vol. 2, Jun. 2005.
    [10] O. Javed, K. Shafique, Z. Rasheed, and M. Shah, “Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views,” Computer Vision and Image Understanding, pp.146–162, 2008.
    [11] T. D'Orazio, P.L. Mazzeo; P. Spagnolo, “Color Brightness Transfer Function Evaluation for Non overlapping Multi Camera Tracking,” Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference, pp.1-6, Sep. 2009.
    [12] T. Vetter and T. Poggio, “Linear object classes and image synthesis from a single example image, ” IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7), pp. 733–742, 1997.
    [13] M.O. Mehmood, “Multi-camera based Human Tracking with Non- Overlapping Fields of View,” Application of Information and Communication Technologies, 2009. AICT 2009. International Conference, pp.1-6, Oct. 2009.
    [14] M. Piccardi and E.D. Cheng, “Track matching over disjoint camera views based on an incremental major color spectrum histogram,” Advanced Video and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference, pp.147-152, Sept. 2005.
    [15] R. Cucchiara, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Transactions on Pattern Analysis And Machine Intelligence., Vol. 25, No. 10, pp. 1–6, Oct. 2003.
    [16] V. Athitsos and S. Sclaroff, “Estimating 3D hand pose from a cluttered image, ” Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR03), 2003.
    [17] D. Gavrila and V. Philomin, “Real-time object detection for “smart” vehicles, ” International Conference on Computer Vision (ICCV99), pp. 87–93, 1999.
    [18] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, “Boostmap: A method for efficient approximate similarity rankings, ” Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR04), pp. 268–275, 2004.
    [19] K. Grauman and T, “Darrell. Fast contour matching using approximate Earth Mover’s Distance, ” Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR04), volume I, pp. 220–227, 2004.
    [20] P. Indyk and N. Thaper, “Fast image retrieval via embeddings, ” International Conference on Computer Vision (ICCV03), 2003.
    [21] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Comparing images using the Hausdorff distance, ” IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 9(15), pp. 850–863, 1993.
    [22] Y. Shan, H. Sawhney , and R. Kumar, “Vehicle identification between non-overlapping cameras without direct feature matching,” Proc. Int’l Conf. Computer Vision, vol. 1, pp. 378-385, 2005.
    [23] D. Jacobs, D. Weinshall, and Y. Gdalyahu, “Class representation and image retrieval with non-metric distances, “ IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 22(6), pp. 583–600, 2000.
    [24] F. Said, A. Murat, L. Ivan, B. Marc, and B. Sofiane, “Clustering Based on Kolmogorov Information, “ SpringerLink, pp. 452-460, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE