研究生: |
王繼青 Wang, Chi-Ching |
---|---|
論文名稱: |
結合田口方法、類神經網路、期望函數與基因演算法於太陽能選擇性吸收膜連續濺鍍製程之參數設計最佳化 Combining Taguchi Methods, Neural Networks, Desirability Function and Genetic Algorithms for Optimizing the Parameter Design of Solar Energy Selective Absorption Film Continuous Sputtering Process |
指導教授: |
蘇朝墩
Su, Chao-Ton |
口試委員: |
侯建良
薛友仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 太陽能 、選擇性吸收膜 、連續濺鍍製程 、田口方法 、倒傳遞類神經網路 、期望函數 、基因演算法 |
外文關鍵詞: | Solar Energy, Selective Absorption Film, Continuous Sputtering Process, Taguchi Methods, Back-Propagation Neural Network, Desirability Function, Genetic Algorithms |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在抗暖化聲勢如日中天之際,越來越多國家政府競相參與替代能源的研究發展。工業技術研究院團隊已對太陽能選擇性吸收膜濺鍍製程進行技術開發,在批次濺鍍技術的基礎上,建置國內首座捲對捲(Roll-to-Roll)連續式濺鍍製程原型機,並希望結合工業工程領域之相關知識,最佳化製程參數。
太陽能選擇性吸收膜連續濺鍍製程中,影響其成品品質的製程參數眾多,如果僅依據工程師經驗來判斷其設定值,可能導致製程不穩定而造成不良率提高。本研究針對太陽能選擇性吸收膜製程參數最佳化提出一系統性的求解程序,首先以歷史資料與工程知識篩選出重要參數,使用田口方法(Taguchi Methods)求取最佳化參數組合,另外也透過倒傳遞類神經網路(Back-Propagation Neural Network)建立回應值之SN比與控制因子間的關係模式,以期望函數(Desirability Function)合併輸出值作為適應函數,再利用基因演算法(Genetic Algorithms)求解最佳製程參數水準組合。
經由實驗驗證結果得知,本研究提出之方法能有效掌控問題核心,僅透過18筆資料與調整七個關鍵因子,就能使績效指標提升至國際級高品質標準內。能源節約效益相當於每年可抑制二氧化碳排放達27,553公噸,這是傳統烤漆技術的11倍之多,站在工業界的角度儼然是十分可觀的數字。
“Anti-Global Warming” is a hot topic around the world. A growing number of countries have participated in the research of alternative energies. Industrial Technology Research Institute of Taiwan (ITRT) has already developed the technology in solar energy selective absorption film continuous sputtering process. The institute established the first Roll-to-Roll continuous sputtering process machine in Taiwan based on the batch sputtering process technology. ITRT attempts to combine the technology and the industrial engineering knowledge to optimize manufacturing process parameter settings.
For the extremely complicated solar energy selective absorption film continuous sputtering process, plenty of parameters would affect the output. If we only rely on engineer’s experience to determine the values, the defect rate may increase owing to the unstable manufacturing process. This study proposes a systematic procedure for parameter optimization of solar energy selective absorption film continuous sputtering process. First, historical data and engineering knowledge are used to determine the significant factors. Second, Taguchi methods are employed to find the optimal combination of parameters. Finally, back-propagation neural network (BPN), desirability function, and genetic algorithms (GAs) are utilized to obtain the optimal parameter level combination.
The experimental results present that the proposed method can control the core of the problem efficiently. By simply employing 18 data and adjusting 7 factors, this research can enhance performance metrics to an international high quality standard. Our proposed method can restrain 27,553 tons of carbon dioxide every year with respect to beneficial energy conservation, which is 11 times less emissions than what the traditional paint process produces. From the perspective of industry, this result is considerably impressive.
[1] Bowden, F. P. and Tabor, D., 1950, "The Friction and Lubrication of Solids" (London: Oxford University Press).
[2] Chou, C.-J., Yu, F.-J. and Su, C.-T., 2008, "Combining Neural Networks and Genetic Algorithms for Optimizing the Parameter Design of Inter-Metal Dielectric Layer," Management Track within WiCOM: Engineering, Services and Knowledge Management, Dalian, China, pp. 1-4.
[3] Cook, D. F., Ragsdale, C. T. and Major, R. L., 2000, "Combining a Neural Network with a Genetic Algorithm for Process Parameter Optimization," Engineering Application of Artificial Intelligence, Vol. 13, Issue. 4, pp. 391-396.
[4] Derringer, G. C. and Suich, R., 1980, "Simultaneous Optimization of Several Response Variables," Journal of Quality Technology, Vol. 12, pp. 214-219.
[5] Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B. and Gatti, L. V., 2009. Observational constraints on recent increases in the atmospheric CH4 burden, Geophysical Research Letters, Vol. 36, Issue. 18, CiteID L18803.
[6] EIA: The Emission Database for Global Atmospheric Research (EDGAR Version 3.2). http://www.eia.doe.gov/oiaf/1605/1605aold.html. Retrieved 25 May 2011.
[7] EPA, 2007: Recent Climate Change: Atmosphere Changes. Climate Change Science Program. United States Environmental Protection Agency. http://www.epa.gov/climatechange/science/recentac.html. Retrieved 25 May 2011.
[8] Fan, J. C. C. and Spura, S. A., 1977, "Selective Black Absorbers Using RF Sputtered Cr~Oz/Cr Cermet Films," Appl. Phys. Lett. 30, 513.
[9] Fowlkes, W. Y. and Creveling, C. M., 1995, Engineering Methods for Robust Product Design, Addison-Wesley Publishing Company.
[10] Goldberg, D. E., 1989, Genetic Algorithm in Search, Optimization and Machine Learing, Addison-Wesley, New York.
[11] Hasan, K., Babur, O. and Tuncay, E., 2005, "Warpage Optimization of a Busceiling Lamp Base Using Neural Network Model and Genetic Algorithm," Journal of Materials Processing Tech, Vol. 169, Issue. 2, pp. 314-319.
[12] Harding, G. L. and Window, B., 1979, "Graded Metal Carbide Solar Selective Surfaces Coated onto Glass Tubes by a Magnetron Sputtering System," J. Vac. Sci. Technol. 16, 2101.
[13] Hollands, K. G. T., 1963, "Directional Selectivity, Emittance, and Absorptance Properties of Vee Corrugated Specular Surfaces," Solar Energy, Vol. 7, Issue. 3, July-September 1963, pp. 108-116.
[14] Huang, C.-C. and Tang, T.-T., 2006, "Parameter Optimization in Melt Spinning by Neural Networks and Genetic Algorithms," The International Journal of Advanced Manufacturing Technology, Vol. 27, No. 11-12, pp. 1113-1118.
[15] International Energy Agency (IEA), 2009, Energy Technology Perspectives 2008: Scenarios & Strategies to 2050, Paris.
[16] International Energy Agency (IEA), 2009, Renewable Information 2009, Paris.
[17] IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[18] Jiangsu Sunpower, 2010, Solar Energy Flux and Reflectance Wavelength. http://www.sunpower-solar.com/tech/2.gif. Retrieved 25 May 2011.
[19] Keeling, C. D. and Whorf, T. P., 2005, Atmospheric CO2 Records from Sites in the SIO Air Sampling Network, in Trends: a Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., Oak Ridge, Tenn.
[20] Lee, S.-E., Choi, S.-W. and Yi, J., 2000, "Double-Layer Anti-Reflection Coating Using MgF2 and CeO2 Films on a Crystalline Silicon Substrate," Thin Solid Films, 376, 208.
[21] Martin, D. C. and Bell, R., 1960, "In Proceeding of Conference on Coatings for the Aerospace Environment," Dayton, Ohio, WADD-TR-60-TB.
[22] Michael Ernst, 2005, Global Average Temperature and Carbon Dioxide Concentrations, 1880-2004. http://conservationreport.files.wordpress.com/2009/02/global-average-temperature.jpg. Retrieved 25 May 2011.
[23] NOAA, Major Greenhouse Gas Trends. http://www.esrl.noaa.gov/gmd/aggi/aggi_2010.fig2.png. Retrieved 25 May 2011.
[24] Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice-Hall.
[25] Rohde, Robert A., 2008, Atmospheric Carbon Dioxide Measure at Mauna Loa, Hawaii. http://en.wikipedia.org/wiki/File:Mauna_Loa_Carbon_Dioxide-en.svg. Retrieved 25 May 2011.
[26] Rohde, Robert A., 2000, Annual Greenhouse Gas Emission by Sector. http://upload.wikimedia.org/wikipedia/commons/e/e0/Greenhouse_Gas_by_Sector.png. Retrieved 25 May 2011.
[27] Ross, P. J., 1996, Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company.
[28] Shi, F., Lou, Z.-L., Lu, J.-G. and Zhang, Y.-Q., 2003, "Optimization of Plastic Injection Molding Process with Soft Computing," International JournalAdvanced Manufacturing Technology, Vol. 21, pp. 656-661.
[29] Solarbuzz, 2011, 2011 Marketbuzz.
[30] Su, C.-T., Tong, L.-I. and Wang, C.-H., 1997, "The Optimization of Multi-Response Problems in the Taguchi Method," International Journal of Quality & Reliability Management, Vol. 14, No. 4, pp. 367-380.
[31] Su, C.-T. and Chiang, T.-L., 2002, "Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach," IEEE Transaction on Electronics Packaging Manufacturing, Vol. 25, No. 1, pp. 13-18.
[32] Widrow, B., Winter, R. G. and Baxter, R. A., 1987, "Learning Phenomena in Layered Neural Networks," Proceedings of the IEEE First Annual International Conference on Neural Networks, pp. 411-429.
[33] Wu, A., 2001, Robust Design Using Taguchi Methods, Workshop Manual, American Supplier Institute (ASI), Version 3.0.
[34] Zhang, Q.-C., 1988, "Metal-AlN Cermet Selective Surfaces Deposited by Direct Current Magnetron Sputtering Technology," J. Physics D: Appl. Phys. 31, pp. 355-362.
[35] Zhang, Q.-C., 1997, "Direct Current Magnetron Sputtered W-AlN Cermet Selective Surfaces," J. Vac. Sci. Technol. Vol.15, pp. 2842-2846.
[36] Zhang, Q.-C., Zhao, K., Zhang, B.-C., Wang, L.-F., Shen, Z.-L., Zhou, Z.-J., Lu, D.-Q., Xie, D.-L. and Li, B.-F., 1998, "New cermetsolar coatings for solar thermal electricity applications," Solar Energy, 64, 109.
[37] Zhang, Q.-C. and Shen, Y.-G., 2004, "High Performance W-AlN Cermet Solar Coatings Designed by Modelling Calculations and Deposited by DC Magnetron Sputtering," Solar Energy Materials & Solar Cells, 81, 25-37.
[38] 田口玄一,1996,田口式品質工程,中華銀國品質管制學會。
[39] 蘇朝墩,2002,品質工程,中華民國品質學會。
[40] 蘇朝墩,2010,類神經網路及其應用,上課教材。
[41] 李正中,2006,薄膜光學與鍍膜技術 第五版,藝軒出版社。
[42] 白目靖寬、吉田貞史,2006,薄膜工程學,全華出版社。
[43] 傅承祖等,2007,LCD面板雷射切割技術量產化因素探討,機械工業雜誌,第292期,pp. 91-99。
[44] 陳夢倫,2003,積層陶瓷電容印刷製程機器參數最佳化之研究,成功大學製造工程研究所碩士論文。
[45] 楊建裕,1999,太陽熱能技術研究開發規劃,中央大學機械工程學系。
[46] 拓墣產業研究所,2007,全球替代能源的投資金額預測。
[47] 工業技術研究院,綠能與環境研究所,http://www.itri.org.tw/chi/gel/,2011年5月25日檢索。