研究生: |
李曉飛 |
---|---|
論文名稱: |
複合式模糊平均數群聚演算法應用於PET/CT之電腦斷層影像分割 Mixed Fuzzy C-Mean Clustering and its Application to CT Image Segmentation in PET/CT Imaging |
指導教授: |
許靖涵
Ching-Han Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | PET/CT 、衰減修正 、影像分割 、模糊平均數群聚演算法 |
外文關鍵詞: | PET/CT, Attenuation Correction, Image Segmentation, Fuzzy C-Mean Clustering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結合正子斷層掃描和電腦斷層掃描的PET/CT(Positron Emission Tomography/ Computer Tomography)問世之後,成功地將功能性攝影和人體解剖構造結合在一起,提供卓越的臨床診斷價值。然而PET受制於衰減效應(Attenuation)的影響,無法提供準確地定量分析結果。本研究的目的在於提出一套自動化的電腦斷層影像分割方法,來幫助正子斷層掃描的衰減修正(Attenuation Correction),以期增加衰減修正的準確性以及臨床上的實用性。本研究的方法以模糊平均數群聚演算法(Fuzzy C-Means Clustering, FCM)為架構,直接探討影像點在影像中的分布關係,整體地評估區域的分布特性,打破傳統的影像分割方法中,必須以影像值為測量空間的侷限。本研究所提出之複合式FCM演算法(Mixed Fuzzy K-Means Clustering, Mixed FCM),結合了兩種影像屬性:影像值的區域變化和影像值的大小,改善群聚分析中缺乏影像點的空間資訊。由實驗的結果可以顯示,利用複合式FCM演算法不但能更正確地區分出骨骼和空氣區域,凸顯骨骼和空氣在解剖空間上的位置,並且亦改善了顯影劑(Contrast Agent)對於衰減修正的影響,增加衰減修正的準確性。
A PET/CT (Positron Emission Tomography/ Computer Tomography) has unique capability of acquiring accurately aligned functional and anatomical images for human body, and supplies the excellent worth in clinical diagnosis. However, PET images are not able to provide correct quantitative analysis due to the attenuation of photons. Many researches have applied computed tomography (CT) data as X-ray based attenuation correction for positron emission tomography (PET) imaging. In this study, we present an automatic segmented method of CT images in whole body scan to improve attenuation correction in PET imaging. A mixed fuzzy C-means (FCM) clustering which combines the use of the intensity attribute of the homogeneous objects with the standard deviation attribute of the inhomogeneous objects is introduced. The experimental results indicate that this method not only enhances the anatomical localization of bone and air in CT images, but also reduces the influence from the contrast agent. Besides, it reduces the bias due to transmission data, and promotes the practical utility in clinical diagnosis.
【1】 John M. Ollinger and Jeffrey A. Fessler, “Positron-Emission Tomography”, IEEE Singnal Processing Magazine, January, 1997
【2】 Gabriele Tarantola, Felicia Zito, and Paolo Gerundini, “PET instrumentation and reconstruction algorithms in whole-body applications”, The Journal of Nuclear Medicine, Vol. 44, No. 5, May 2003
【3】 莊克士, “醫學影像物理學”, 合記圖書, 1998
【4】 Theobald O. J. Fuchs, Marc Kachelrieß, and Willli A. Kalender, “Fast Volume Scanning Approaches by X-Ray-Computed Tomography”, Proceedings of the IEEE, Vol. 91, No. 10, 2003
【5】 Thomas Beyer and David W. Townsend et. al. “A Combined PET/CT Scanner for Clinical Oncology”, The Journal of Nuclear Medicine, Vol. 41, No. 8, August, 2000
【6】 David W. Townsend, Jonathan P.J. Carney, Jeffrey T. Yap and Nathan C. Hall, “PET/CT Today and Tomorrow”, The Journal of Nuclear Medicine, Vol. 45, No. 1, January, 2004
【7】 Heiko Schoder, Yusuf E. Erdi, Steven M. Larson and Henry W. D. Yeung, “PET/CT: a new imaging technology in nuclear medicine”, European Journal of Nuclear Medicine and Molecular Imaging, Vol. 40, No. 30, January, 2003
【8】 Vibhu Kapoor, Barry M. McCook and Frank S. Torok, “An Introduction to PET/CT Imaging”, RadioGraphics, Vol. 24, 2004
【9】 J.P.J. Carney, J.T. Yap and D.W. Townsend, “PET count rate performance and CT image quality of a 16-slice LSO PET/CT for clinical whole-body imaging”, Radiation Physics Chemistry, Vol. 71, 2004
【10】 Michael E. Phelps, “Positron-Emission Tomography provides molecular imaging of biological processes”, PNAS, Vol. 97, No. 16, Auguest, 2000
【11】 A. H. Jacobs, H. Li, A. Winkeler, and R. Hilker et. al. “PET-based molecular imaging in neuroscience”, European Journal of Nuclear Medicine and Molecular Imaging, Vol. 30, No. 7, July, 2003
【12】 Wahl RL. “To AC or not AC: that is the question”, Journal of Nuclear Medicine, Vol. 40, 1999, pp: 2025-2028
【13】 Harold Elford Johns and John Robert Cunningham, “The physics of radiology”, Charles C. Thomas,1983
【14】 Paul E. Kinahan, Bruce H. Hasegawa, and Thomas Beyer, “X-Ray-Based Attenuation Correction for Positron Emission Tomography/Computed Tomography Scanners”, Seminars in Nuclear Medicine, Vol. XXXIII, No. 3, July, 2003, pp:166-179
【15】 Max Lonneux, Ivan Borbath and Ann cooppens et. al.”Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction”, European Journal of Nuclear Medicine, Vol. 26, No. 6, June, 1999
【16】 Patrick L Chow, Fernando R Rannou and Arion F Chatziioannou, “Attenuation correction for small animal PET tomographs”, Physics of Medical Biology, Vol. 50, 2005, pp: 1837-1850
【17】 M. Xu, P. D. Cutler, and W.K. Luk, “Adaptive, segmented attenuation correction for whole-body PET imaging”, IEEE Transactions on Nuclear Science, Vol. 43, No. 1, February, 1996
【18】 H Zaidi, M Diaz-Gomez1, A Boudraa and D O Slosman, “Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging”, Physics in Medical Biology, Vol. 47, 2002, pp: 1143–1160
【19】 P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin, “Attenuation correction for a combined 3D PET/CT scanner”, Medical Physics, Vol. 25, October, 1998
【20】 Isaac N. Bankman, “Medical Imaging”, Academic Press, 2000
【21】 Atam P. Dhawan, “Medical Image Analysis”, Wiley-Interscience, 2003
【22】 Raghu Krishnapuram and James M. Keller, ”A possibilistic approach to clustering”, IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, May, 1993
【23】 Sanjeev R. Kulkarni, Gabor Lugosi, and Sntosh S. Venkatesh, “Learning Pattern Classification”, IEEE Transactions on Information theory, Vol. 44, No. 6, October, 1998
【24】 Richard O. Duda, Peter E. Hart and David G. Stork, “Pattern Classification”, Wiley-Interscience, 2001
【25】 Gerardo Beni and Xiaomin Liu, “A Least Biased Fuzzy Clustering Method”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 9, September, 1994
【26】 Pece V. Gorsevski1, Paul E. Gessler1 and Piotr Jankowski, “Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard”, The Journal of Geograph System, Vol. 5, 2003, pp:223–251
【27】 Dzung L. Pham, “Spatial Models for Fuzzy Clustering”, Computer Vision and Image Understanding, Vol. 84, 2001, pp:285-297
【28】 Douglas C. Montgomery, and George C. Runger, “Applied Statistics and Probability for Engineers”, John Wiley & Sons, Inc. 2002
【29】 Peter Santago, H. Donald Gage, “Statistical models of partial volume effect”, IEEE Transactions on Image Processing, Vol. 4, No. 11, November, 1995