研究生: |
呂彥勳 Yen-Shiun Lu |
---|---|
論文名稱: |
沉積鈷和鎳奈米顆粒對氫在二氧化鈦奈米管上的分散效應研究 Spillover effect on TiO2 nanotubes by deposition of Co and Ni |
指導教授: |
彭宗平
Tsong-Pyng Perng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 分散 、沉積 |
外文關鍵詞: | Spillover, Deposition |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近來,奈米材料被廣泛的應用在氫氣儲存的研究,因其擁有大比表面積可用於物理吸附。藉由沉澱或摻入催化劑在奈米材料上,應用分散效應來增強吸氫容量。氫分子先在催化劑上分解成氫原子,爾後再分散到奈米材料的表面上。
本研究主要探討沉積鈷和鎳奈米顆粒對氫在二氧化鈦奈米管上分散效應的影響。二氧化鈦奈米管經鑑定具有H2Ti3O7的結構。沉澱的奈米顆粒約略為10奈米。經過600 K氫氣氣氛下的預處理,氫吸附量使用氣相法和電化學法來量測。製備的二氧化鈦奈米管經量測得到1.4 at%氫吸附量. 經過沉澱鈷奈米顆粒,氫吸附量可增加到13 at%,約是單純二氧化鈦奈米管的九倍。而沉澱鎳奈米顆粒,氫吸附量可增加到9.5 at%,約是單純二氧化鈦奈米管的七倍。
Abstrate
Recently, nanostructured materials have been widely investigated for the application of hydrogen storage because of their ultrahigh specific surface areas which are efficient for physisorption. Spillover effect is employed to enhance the adsorption capacity by deposition or doping with catalysts on the nano-structured materials. Hydrogen molecules are firstly dissociated into hydrogen atoms on the catalyst, and then the split atomic hydrogen is spilled over the surface of nanomaterials.
In this study, the spillover effect on the hydrogenation of TiO2 nanotubes was studied by deposition of Co and Ni. The as-prepared TiO2 nanotubes were identified to exhibit H2Ti3O7 structure. The diameter of nanoparticles was approximately 10 nm. The samples were pretreated at 600K in H2. The volumetric and electrochemical methods were applied to measure the hydrogen adsorption capacity. The as-prepared TiO2 nanotubes absorbed only 1.4 at% H. With deposition of Co, the hydrogen adsorption capacity increased to 13 at% which is nine fold increase than that of the as-prepared TiO2 nanotubes. With deposition of Co, the hydrogen adsorption capacity increased to 9.5 at% which is approximately seven fold larger than that of the as-prepared TiO2 nanotubes.
Chapter Ⅵ References
(1) S. Iijima, Nature, 354, 56 (1991)
(2) A. D. Lueking and R. T. Yang, Appl. Catal. A: General, 265, 259 (2004)
(3) Y. Li and R. T. Yang, J. Am. Chem. Soc., 128, 8136. (2006)
(4) A. Lueking and R. T. Yang, J. Catal., 206, 165 (2002)
(5) Y. Li and R. T. Yang, J. Chem. Phys. B, 110, 17175 (2006)
(6) L. Schlapbach and A. Züttel, Nature, 414, 15 (2001)
(7) L. Schlapbach, Hydrogen in Intermetallic Compounds I. Electronic,
Thermodynamic, and Crystallographic Properties, Preparation; Springer, 1988.
(8) B. Bogdanovic, R. A. Brand, A. Marjanovica, M. Schwickardia, and J. Tolle, J. Alloys Comp, 302, 36 (2000)
(9) A. Züttel, Mater. Today, 6, 24 (2003)
(10) A. Zu¨ttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, and C. Emmenegger, J. Power Sources, 118, 1 (2003)
(11) Y. H. Hu and E. Ruckenstein, Ind. Eng. Chem. Res., 45, 4993 (2006)
(12) Y. H. Hu and E. Ruckenstein, Ind. Eng. Chem. Res., 44, 1510 (2005)
(13) M. Hirscher and B. Panella, J. Alloys Comp., 404-406, 399 (2005)
(14) M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. V. Dillen, and K. P. D. Jong, Appl. Phys. A, 72, 619 (2001)
(15) A. M. Seayad and D. M. Antonelli, Adv. Mater, 16, 765 (2004)
(16) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science, 300, 1127 (2003)
(17) C. N. R. Rao and M. Nath, Dalton Trans., 1, 1 (2003)
(18) X. Wu, J. L. Yang, and X. C. Zenga, J. Chem. Phys., 125, 044704 (2006)
(19) R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, and D. Wu, J. Am. Chem. Soc, 124, 7672 (2002)
(20) C. Tang, Y. Bando, X. Ding, S. Qi, and D. Golberg, J. Am. Chem. Soc., 124, 14550 (2002)
(21) J. Chen, S. L. Li, and Za. L. Tao, J. Alloys Comp., 356-357, 413 (2003)
(22) J. Chen, S. L. Li, Z. L. Tao, Y. T. Shen, and C. X. Cui, J. Am. Chem. Soc., 125, 5284 (2003)
(23) S. H. Lim, J. Luo, Z. Zhong, and J. Wei, Inorg. Chem., 44, 4124 (2005)
(24) D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, and F. C. Walsh, J. Phys. Chem. B, 109, 19422 (2005)
(25) Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett., 84, 124 (2004)
(26) H. Pan, J. Luo, H. Sun, Y. Feng, C. Poh, and J. Lin, Nanotechnology, 17, 2963 (2006)
(27) R. Zacharia, K. Y. Kim, F. Kibria, and K. S. Nahm, Chem. Phys. Lett., 412, 369 (2005)
(28) R. Zacharia, S. Rather, S. W. Hwang, and K. S. Nahm, Chem. Phys. Lett., 434, 286 (2007)
(29) E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T. Matsumoto, and J. Nakamura, J. Phys. Chem. B, 108, 18903 (2004)
(30) P. Jain, D. A. Fonseca, E. Schaible, and A. D. Lueking, J. Phys. Chem. C, 111, 1788 (2007)
(31) D. Lupu, A. R. Biris, I. Misan, A. Jianu, G. Holzhuter, and E. Burkel, Int. J. Hydrogen Energy, 29, 97 (2004)
(32) R. Wojcieszak; M. Zielinski, S. Monteverdi, and M. M. Bettahar, J. Colloid Interface Sci., 299, 238 (2006)
(33) T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and Nakamura J., Chem . Commun., 840 (2004)
(34) T. K. Matsumoto, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and J. Nakamura, Catal. Today, 90, 277 (2004)
(35) J. Kong, M. G. Chapline, and H. Dai, Adv. Mater, 13, 1384 (2001)
(36) Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora, and K.L. Soh, Sensors and Actuators B, 93, 327 (2003)
(37) W. C. Conner and J. L. Falconer, Chem. Rev., 95, 759 (1995)
(38) Y. Li and R. T. Yang, J. Am. Chem. Soc., 128, 726 (2006)
(39) P. Hoyer, Langmuir, 12, 1411 (1996)
(40) J. H. Jung, V. Bommel, S. Shinkai, and H. Shimizu, Chem. Mater., 14, 1445 (2002)
(41) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir, 14, 3160 (1998)
(42) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater, 11, 1307 (1999)
(43) Y. Zhu, H. Li, Y. Koltypin, Y. H. Rosenfeld, and A. Gedanken, Chem. Commun., 24, 2616 (2001)
(44) G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, Appl. Phys. Lett., 79, 3702 (2001)
(45) D. S. Seo, J. K. Li, and H. Kim, J. Cryst. Growth, 229, 428 (2001)
(46) Q. H. Zhang, L. Gao, J. Sun, and S. Zheng, Chem. Lett., 3, 226 (2002)
(47) W. Wang, O. K. Varghese, M. Paulose, Q. Wang, E. C. Dickey, and C. Grimesa, J. Mater. Res., 19, 417 (2004)
(48) B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, and N. Wang, Appl. Phys. Lett., 82, 281 (2003)
(49) X. Sun and Y. Li, Chem. Eur. J, 9, 2229 (2003)
(50) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater, 11, 1307 (1999)
(51) Q. Chen, S. Zhanga, and L.M. Peng, Acta Cryst. B, 58, 587 (2002)
(52) Q. Chen, S. Zhanga, and L.M. Peng, Adv. Mater, 14, 1208 (2002)
(53) J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, and Z. Zhang, Dalton Trans., 3898 (2003)
(54) A. Nakahira, W. Kato, M. Tamai, T. Isshiki, and K. Nishio, J. Mater. Sci., 39, 4239 (2004)
(55) Q. Chen, W. Zhou, G. Du, and L. M. Peng, Adv. Mater., 14, 1208 (2002)
(56) S. R. Chung, K. W. Wang, and T. P. Perng, J. Electrochem. Soc., 153, A1128-A1131 (2006)