研究生: |
樊修秀 Farn, Shiou-Shiow |
---|---|
論文名稱: |
放射性標幟分子之製備與生物試驗以作為腦瘤與巴金森氏病診斷之應用研究 Preparation and Biological Assessment of Imaging Agents for Diagnosis of Brain Tumor and Parkinson’s Disease |
指導教授: |
俞鐘山
Yu, Chung-Shan |
口試委員: |
林俊成
Lin, Chun-Cheng 簡敦誠 Chien, Tun-Cheng 林武智 Lin, Wuu-Jyh 顏若芳 Yen, Ruoh-Fang 鄭澄意 Cheng, Cheng-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 腦瘤 、環氧化酶酵素 、多巴胺D2接受體 、多巴胺轉運體 、芬布芬 、分析方法確效 、巴金森氏病 |
外文關鍵詞: | brain tumor, cyclooxygenase enzyme, dopamine receptor, dopamine transporter,, fenbufen, method validation, Parkinson’s disease |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦瘤(brain tumor)與帕金森氏病(Parkinson’s disease)是全球關切注目的健康議題與焦點。本研究分為三部分,第一部分:以環氧化酶酵素作為研究標的,開發[18F]FFOA 5腦瘤正子造影劑。第二部分:以多巴胺轉運體作為研究標的,開發[68Ga]IPCAT-NOTA 28 多巴胺轉運體正子造影劑。第三部分:針對多巴胺D2接受體造影劑[123I]IBZM定量問題,開發[123I]IBZM放射化學純度分析方法與確效。
第一部分:由市售化合物4-bromobiphenyl作為起始物進行Friedel-Crafts reation 合成溴化芬布芬1,產率93 %。下一步進行醯胺耦合反應合成溴化辛基醯胺芬布芬2,產率87 %。再經由鈀金屬催化進行錫化反應合成三甲基錫化辛基醯胺芬布芬3,產率60 %。三步驟合成總產率50 %,放射性合成經由[18F]F2進行親電子性取代,合成最終產物[18F]FFOA 5,放射產率16%,比活度4 GBq/μmole。[18F]FFOA 5對於COX-1及COX-2酵素的半結合抑制值(IC50),分別是26.5 μM與32.7 μM。從體外安定性試驗與PET影像分析數據來看,相較於[18F]FOFA,[18F]FFOA 5的in vitro藥物安定性長達30分鐘(t1/2 = 30 min)與明顯改善[18F]FOFA的脫氟(defuorination)情形(t1/2 = 10 min)。[18F]FFOA 5明顯的累積在C6 Glioma腦瘤小鼠的肺臟(70 %ID/g),約為C6 Glioma腦瘤大鼠(30 %ID/g)的兩倍多,而且從C6 Glioma腦瘤大鼠的PET影像分析數據得知,腦部吸收值2.5 %ID/g以及腫瘤吸收值3.9 %ID/g。儘管[18F]FFOA 5半結合抑制值(IC50)僅達到uM等級,但是,內生性COX-2酵素與[18F]FFOA 5結合能力,仍可讓區別腦瘤與正常區域組織之COX-2酵素選擇性指數(SI)達到1.5。
第二部分:以Cocaine為起始物,合成化合物 24,產率為76%。另以ethylene glycol和diethylenetriamine前驅物,合成化合物17與化合物19,將化合物17與化合物19分別與化合物24進行取代反應來獲得產物IPCAT-NOTA 26與IPCET-NOTA 27,合成產率均<5%,化學純度分別為99%與<5%。放射性合成則經由螯合[68Ga]成為最終產物[68Ga]IPCAT-NOTA 28與 [68Ga]IPCET-NOTA 29,放射化學純度均≧90%,比活度3.7 MBq/nmol。選用[68Ga]IPCAT-NOTA 28進行後續生物試驗。[68Ga]IPCAT-NOTA 28生物試驗結果:(1)體外血清安定試驗,在37℃長達60分鐘,仍可維持在85%以上的放射化學純度,顯示68Ga可穩定螯合在NOTA 結構。(2)體外親脂性分析,以搖瓶法測定[68Ga]IPCAT-NOTA 28 LogP值,LogP僅有0.88 ± 0.30,表示[68Ga]IPCAT-NOTA 28是難以通過血腦障壁(BBB),另以電腦模擬分析亦獲得相似結果。(3)體外結合試驗,[68Ga]IPCAT-NOTA 28之大鼠專一性結合比值SBR(%) 15.76 ± 6.74%以及小鼠專一性結合比值SBR(%)為29.75%。(4)體外競爭結合試驗,[68Ga]IPCAT-NOTA 28與前驅物以1:1、1:100與1:1000的濃度比例,競爭與紋狀體的結合能力,專一性結合比值分別為15.76 ± 3.74 , 7.27 ± 5.53與-11.67 ± 4.65,濃度比例100倍的前驅物濃度,可以達到85%的抑制作用。(5)體內NanoPET影像分析,注射37 MBq [68Ga]IPCAT-NOTA 28後5-15、30-40、60-70 min,紋狀體專一性結合量分別為5.78%、25.42%、61.99%,但整體進腦量僅0.07 %ID/g。(6)體內代謝分析試驗,注射55.5MBq [68Ga]IPCAT-NOTA 28後30分鐘,仍有67.65% [68Ga]IPCAT-NOTA 28存在。
第三部分:採用梯度流洗方式、層析管柱:Zorbax XDB C-18、移動相組成:10 mM 3,3-dimethylglutaric acid (DMGA)與乙晴(pH 7.0)、流速:1.0 mL/min與紫外光/可見光波長λ=254 nm。分析方法確效:(1)系統適用性:拖曳因素0.96±0.03(mean±S.D)、理論板數10,656.11±176.16 (mean±S.D)以及解析度9.37±0.33(mean±S.D),前述數據值均符合規範(N≧3000, T=0.8–1.3, k′=2–8, Rs≧1.5),證明本系統適用於後續分析作業。(2)專一性:BZM, IBZM, [123I]IBZM與[123I]NH4I的層析峰滯留時間(Retention Time;Rt),彼此不受干擾。(3)分析精密度與中間精密度:[123I]IBZM層析滯留時間CV%≦2%。(4)準確度(Accuracy)與回收率(Recovery):不同天,不同濃度的回收率大多落在88%~100%之間。(5)線性(Linearity):經由線性迴歸分析所計算出的相關係數r≧0.995。(6)耐變性:變更移動相組成(±5%)、變更溫度(±5%)與變更流速(±10%)溫度,對[123I]IBZM放射化學純度不會有太大的影響。(7)最低偵測極限與最低定量極限(LOD與 LOQ)分別為0.145 ug/mL and 0.50 ug/mL。本法適用於[123I]IBZM放射化學純度分析,可得到極佳之敏感性、再現性、精密度與準確性等。
本研究成功開發新穎COX-2腦瘤正子造影劑與新穎多巴胺轉運體正子造影劑,期許後續進一步評估非特異性的結合情形、不同腦瘤分級動物模式以及變更螯合劑結構,以達到精準診斷功效。此外,本研究成功發展一可靠與準確 [123I]IBZM放射化學純度分析,適用於臨床應用以進行BZM與IBZM的定量分析。
Brain tumor and Parkinson's disease are global health concerns and focus issues. The study was divided into three parts. The first part, cyclooxygenase enzyme was used as the research target to develope [18F]FFOA 5 brain tumor imaging agent. The second part, dopamine transporter was used as the research target to develope [68Ga]IPCAT-NOTA 28 dopamine transporter imaging agent. The third part, the [123I]IBZM radiochemical purity analysis method was developed and validated to quantify the [123I]IBZM dopamine D2 receptor imaging agent
The first part, starting from commercial 4-bromobiphenyl via Friedel Crafts acylation to give bromo-fenbufen 1 in 93 % yield, amide coupling reaction to give bromo-fenbufen octyl amide 2 in 87 % yield, and Pd catalyzed stannylation to give trimethyltin-fenbufen octyl amide 3 in 60 % yield, The totoal yield was 50% [18F]FFOA 5 was obtained by fluoro- destannylation using [18F]F2. Para-[18F]Fluorofenbufen octylamide ([18F]FFOA) 5 was obtained with the radiochemical yield of 16% and specific activity of 4 GBq/μmol, and the IC50 values of COX-1 and COX-2 were 26.5 and 32.7 μM, respectively. The stability of cold FFOA in plasma was significantly improved with a half-life of 30 min, and the uptake ratio of [18F]FFOA 5 in rats with brain tumor was 1.5 as determined from accumulation of 3.9% injection dose (ID/g) in the brain tumor and 2.5% ID/g in the brain. [18F]FFOA 5 with COX-2 micromolar affinity can be used to differentiate between brain tumor and normal region.
The second part, starting from Cocaine, compound 24 was synthesized in 76% yield. Compound 17 and 19 were synthesized form of ethylene glycol and diethylenetriamine as starting precursors, furthoremore, compound 24 react with compound 17 and 19 via substitution reaction to gain IPCAT-NOTA 26 and IPCET-NOTA 27 in less than 5% yield, >99% and less than 5% chemical purity of IPCAT-NOTA 26 and IPCAT-NOTA 27, respectively. [68Ga]IPCAT-NOTA 28 and [68Ga]IPCET-NOTA 29 were obtained with the radiochemical purity of ≧90% and specific activity of 3.7 MBq/nmol, respectively. [68Ga]IPCAT-NOTA 28 was selected for follow-up biological experiments. The biological results of [68Ga]IPCAT-NOTA 28 were shown as follows: (1) In vitro serum stability tests, it still had 85% radiochemical purity at 37°C up to 60 minutes that indicate the 68Ga could be stable chelated to NOTA. (2) In vitro lipophilic test, it was 0.88 by shaking flask method that means the ability of penetrating BBB is less, furemore, we have got the similar results by using computer-aid simulation. (3) In vitro binding assay, the specific binding ratio (%) (SBR(%)) of [68Ga]IPCAT-NOTA 28 were 15.76 ± 6.74 and 29.75, in SD-rat and Balc/c animal model, respectively. (4) In vitro competitive assay, SBR(%) of [68Ga]IPCAT-NOTA 28 for striatum were 15.76 ± 3.74 , 7.27 ± 5.53, and -11.67 ± 4.65 by competing with cold precursor of 1:1, 1:100 and 1:1000 fold, respectively. It can be achieved up to 85% inhibition at 100 fold of cold precursor concentration. (5) In vivo NanoPET imaging, SBR(%) of [68Ga]IPCAT-NOTA 28 for striatum were 5.78%, 25.42% and 61.99% at 5-15, 30-40 and 60-70 min, however, that was only 0.07 %ID/g of brain uptake after injection of 55.5MBq [68Ga]IPCAT-NOTA 28. (6) In vivo Metabolite assay, it still had 67.65% of radiochemical purity at 30 minutes after injection of 55.5MBq [68Ga]IPCAT-NOTA 28.
The third part, gradient elution on a Zorbax XDB C-18 column with a mobile phase that consists of 10 mM 3,3-dimethylglutaric acid (DMGA) and acetonitrile (pH 7.0) were used. The flow rate was 1.0 mL/min with detection at λ=254 nm. The method was validated for system suitability, precision, accuracy, specificity, linearity, robustness, limit of detection (LOD) and limit of quantification (LOQ), as described in ICH guidelines. The results are described as follows: (1) the system suitability includes the tailing factor, theoretical plate number and resolution, which are 0.962, 10656.11 and 9.367, respectively. (2) For specificity, the BZM and [123I]NH4I did not interfere with the retention time of the [123I]IBZM. (3) The percentage coefficient of variation for analysis of precision, including repeatability and intermediate precision, is less than 2.0%. (4) Accuracy of the method is within the range of 85–100%. (5) The range of linearity is from 100% to 70% radiochemical purity (%RCP) of [123I]IBZM, with the correlation coefficient (R) always being above 0.995. (6) The data of method robustness are within acceptance criteria. (7) The LOD and LOQ for impurity (BZM) are 0.145 and 0.50 μg/mL, respectively. All of the analysis results demonstrate that this method is sensitive, specific and suitable for routine analysis of the radiochemical purity in [123I]IBZM preparations.
In this study, a novel COX-2 brain tumour imaging agent and dopamine transporter imaging agent were successfully developed, respectively. It is hoped to verify and achieve accurate diagnostic efficacy through with evaluating the nonspecific binding, different grades of brain tumor animal models and changeing the chelate structure in the further. Furthormore, a reliable and reversed-phase HPLC method using UV/VIS and radiometric detectors has been developed for qualitative analysis of BZM and IBZM and radiochemical purity in [123I]IBZM preparations.
1. Wu, G., Lifecycle Management of Drug Products: FDA’s Perspective. Lieutenant, U.S. Public Health Service, FDA 2015.
2. Cunha, L.; Szigeti, K.; Mathe, D.; Metello, L. F., The role of molecular imaging in modern drug development. Drug Discov Today 2014, 19 (7), 936-48.
3. Pirker, W.; Asenbaum, S.; Wenger, S.; Kornhuber, J.; Angelberger, P.; Deecke, L.; Podreka, I.; Brucke, T., Iodine-123-epidepride-SPECT: studies in Parkinson's disease, multiple system atrophy and Huntington's disease. J Nucl Med 1997, 38 (11), 1711-7.
4. Xu, H. B., Nanomedicine. Tsinghua University Press: Beijing, China, 2004.
5. Pilgrim, J. L.; Gerostamoulos, D.; Drummer, O. H., Review: Pharmacogenetic aspects of the effect of cytochrome P450 polymorphisms on serotonergic drug metabolism, response, interactions, and adverse effects. Forensic Sci Med Pathol 2011, 7 (2), 162-84.
6. Zhou, S. F.; Liu, J. P.; Chowbay, B., Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009, 41 (2), 89-295.
7. Guidance for Industry, "Analytical Procedures and Methods Validation for Drugs and Biologics". FDA 2015.
8. First Supplement, <1225> VALIDATION OF COMPENDIAL PROCEDURES. USP 40–NF 35 2016.
9. Validation of Analytical Procedures: Text and Methodology, Q2(R1). ICH 2005.
10. Fukumura, T.; Takei, M.; Suzuki, K., Synthesis and biodistribution of 34mCl-labeled 2-chloro-2-deoxy-d-glucose: a major impurity in [18F]FDG injection. Appl Radiat Isot 2008, 66 (12), 1905-9.
11. Farn, S. S.; Yeh, Y. H.; Lin, W. J.; Shen, L. H., Development and validation of 2-deoxy-2-chloro-d-glucose impurity analysis in [(18)F]FDG by three potential-time waveforms of high-performance liquid chromatography/pulsed amperometric detection. Nucl Med Biol 2009, 36 (2), 225-31.
12. Forsback, S. 18F-Labeled Presynaptic Dopaminergic Tracers. Synthesis, Radiochemical Analyses, and Preclinical Evaluation of [18F]FDOPA and [18F]CFT. University of Turku, Turku PET Centre and Department of Clinical Physiology and Nuclear Medicine,
University of Turku, Turku, Finland 2012.
13. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D., Synthesis of C-11, F-18, O-15, and N-13 Radiolabels for Positron Emission Tomography. Angew Chem Int Edit 2008, 47 (47), 8998-9033.
14. Cole, E. L.; Stewart, M. N.; Littich, R.; Hoareau, R.; Scott, P. J. H., Radiosyntheses using Fluorine-18: The Art and Science of Late Stage Fluorination. Curr Top Med Chem 2014, 14 (7), 875-900.
15. Andersson, J., Development of PET radioligands synthesixed from in-target produced [11C]. Department of Clinical Neuroscience, Karolinska Institute: Stockhalm, Sweden 2010.
16. Li, Z. B.; Conti, P. S., Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliver Rev 2010, 62 (11), 1031-1051.
17. Farn, S. S., Study of molecular imaging ahent of central Nerve System in Prof. Christer Halldin's laboratory, Karolinska Institute, Sweden. INER, Taoyuan City 2012.
18. Marchand, P.; Ouadi, A.; Pellicioli, M.; Schuler, J.; Laquerriere, P.; Boisson, F.; Brasse, D., Automated and efficient radiosynthesis of [(18)F]FLT using a low amount of precursor. Nucl Med Biol 2016, 43 (8), 520-7.
19. Coenen, H. H., Fluorine-18 labeling methods: Features and possibilities of basic reactions. E Schering Res Fdn W 2007, 62, 15-50.
20. Coenen, H. H.; Moerlein, S. M., Regiospecific Aromatic Fluorodemetallation of Group-Ivb Metalloarenes Using Elemental Fluorine or Acetyl Hypofluorite. J Fluorine Chem 1987, 36 (1), 63-75.
21. Li, Z.; Conti, P. S., Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 2010, 62 (11), 1031-51.
22. Bartholoma, M. D.; Louie, A. S.; Valliant, J. F.; Zubieta, J., Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 2010, 110 (5), 2903-20.
23. Velikyan, I., 68Ga-Based radiopharmaceuticals: production and application relationship. Molecules 2015, 20 (7), 12913-43.
24. Lee, J. Y.; Jeong, J. M.; Kim, Y. J.; Jeong, H. J.; Lee, Y. S.; Lee, D. S.; Chung, J. K., Preparation of Ga-68-NOTA as a renal PET agent and feasibility tests in mice. Nucl Med Biol 2014, 41 (2), 210-5.
25. Rudin, M.; Weissleder, R., Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003, 2 (2), 123-31.
26. Banerjee, S. R.; Pomper, M. G., Clinical applications of Gallium-68. Appl Radiat Isot 2013, 76, 2-13.
27. Maresca, K. P.; Hillier, S. M.; Femia, F. J.; Zimmerman, C. N.; Levadala, M. K.; Banerjee, S. R.; Hicks, J.; Sundararajan, C.; Valliant, J.; Zubieta, J.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W., Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC). Bioconjug Chem 2009, 20 (8), 1625-33.
28. Chris, J. J.; John, R. T., Diagnostic Medicine. Medicinal Applications of Coordination Chemistry 2007, p141-p152.
29. Bernd J.; Hartmut S., Technetium(V) Chemistry as Relevant to Nuclear Medicine. Topics in Current Chemistry series,
Technetium and Rhenium Their Chemistry and Its Applications 2005, 176, p80-p81.
30. Coenen, H. H.; Mertens, J.; Mazière, B., Radioionidation Reactions for Pharmaceuticals, Compendium for Effective Synthesis Strategies. radioionidation reactions for pharmaceuticals 2006.
31. Kakavand, T.; Sadeghi, M.; Kamali Moghaddam, K.; Shokri Bonab, S.; Fateh, B., Computer simulation techniques to design Xenon-124 solid target for iodine-123 production. Iran. J. Radiat. Res 2008, 5 (4), 207-212.
32. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, What do you need to know abou brain tumor. National Cancer Institute 2009.
33. Diverse Hispanic population to become largest U.S. minority. Popul Today 1997, 25 (11), 1-2.
34. Stewart, B. W.; Wild, C. P., Tumours of the nervous system. World Cancer Report, World Health Organization 2014, Chapter 5.16.
35. Heiss, W. D., Positron emission tomography imaging in gliomas: applications in clinical diagnosis, for assessment of prognosis and of treatment effects, and for detection of recurrences. Eur J Neurol 2017, 24 (10), 1255-e70.
36. Farn, S. S.; Lin, W. J., Abroad report of Attended the 28th European Association of Nuclear Medicine Conference. INER, Taoyuan City 2015.
37. Ostrom, Q. T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. S., CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 2017, 19 (suppl_5), v1-v88.
38. Lesniak, M. S.; Brem, H., Targeted therapy for brain tumours. Nat Rev Drug Discov 2004, 3 (6), 499-508.
39. Miyagawa, T.; Oku, T.; Uehara, H.; Desai, R.; Beattie, B.; Tjuvajev, J.; Blasberg, R., "Facilitated" amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 1998, 18 (5), 500-9.
40. Bergstrom, M.; Lundqvist, H.; Ericson, K.; Lilja, A.; Johnstrom, P.; Langstrom, B.; von Holst, H.; Eriksson, L.; Blomqvist, G., Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 1987, 28 (3), 225-9.
41. Langen, K. J.; Muhlensiepen, H.; Holschbach, M.; Hautzel, H.; Jansen, P.; Coenen, H. H., Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine. J Nucl Med 2000, 41 (7), 1250-5.
42. Kobayashi, K.; Ohnishi, A.; Promsuk, J.; Shimizu, S.; Kanai, Y.; Shiokawa, Y.; Nagane, M., Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery 2008, 62 (2), 493-503; discussion 503-4.
43. Herholz, K.; Holzer, T.; Bauer, B.; Schroder, R.; Voges, J.; Ernestus, R. I.; Mendoza, G.; Weber-Luxenburger, G.; Lottgen, J.; Thiel, A.; Wienhard, K.; Heiss, W. D., 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998, 50 (5), 1316-22.
44. Kuwert, T.; Morgenroth, C.; Woesler, B.; Matheja, P.; Palkovic, S.; Vollet, B.; Samnick, S.; Maasjosthusmann, U.; Lerch, H.; Gildehaus, F. J.; Wassmann, H.; Schober, O., Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 1996, 23 (10), 1345-53.
45. Herholz, K., Brain Tumors: An Update on Clinical PET Research in Gliomas. Semin Nucl Med 2017, 47 (1), 5-17.
46. Galldiks, N.; Langen, K. J.; Pope, W. B., From the clinician's point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 2015, 17 (11), 1434-44.
47. Sweeney, R.; Polat, B.; Samnick, S.; Reiners, C.; Flentje, M.; Verburg, F. A., O-(2-[(18)F]fluoroethyl)-L-tyrosine uptake is an independent prognostic determinant in patients with glioma referred for radiation therapy. Ann Nucl Med 2014, 28 (2), 154-62.
48. Suchorska, B.; Jansen, N. L.; Linn, J.; Kretzschmar, H.; Janssen, H.; Eigenbrod, S.; Simon, M.; Popperl, G.; Kreth, F. W.; la Fougere, C.; Weller, M.; Tonn, J. C.; German Glioma, N., Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 2015, 84 (7), 710-9.
49. Nioche, C.; Soret, M.; Gontier, E.; Lahutte, M.; Dutertre, G.; Dulou, R.; Capelle, L.; Guillevin, R.; Foehrenbach, H.; Buvat, I., Evaluation of quantitative criteria for glioma grading with static and dynamic 18F-FDopa PET/CT. Clin Nucl Med 2013, 38 (2), 81-7.
50. Herrmann, K.; Czernin, J.; Cloughesy, T.; Lai, A.; Pomykala, K. L.; Benz, M. R.; Buck, A. K.; Phelps, M. E.; Chen, W., Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro Oncol 2014, 16 (4), 603-9.
51. Karunanithi, S.; Sharma, P.; Kumar, A.; Gupta, D. K.; Khangembam, B. C.; Ballal, S.; Kumar, R.; Kumar, R.; Bal, C., Can (18)F-FDOPA PET/CT predict survival in patients with suspected recurrent glioma? A prospective study. Eur J Radiol 2014, 83 (1), 219-25.
52. Mostofa, A. G.; Punganuru, S. R.; Madala, H. R.; Al-Obaide, M.; Srivenugopal, K. S., The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017, 7 (2), 34.
53. Chandna, N.; Kumar, S.; Kaushik, P.; Kaushik, D.; Roy, S. K.; Gupta, G. K.; Jachak, S. M.; Kapoor, J. K.; Sharma, P. K., Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent anti-inflammatory agents and cyclooxygenase inhibitors. Bioorgan Med Chem 2013, 21 (15), 4581-4590.
54. Renard, J. F.; Lecomte, F.; Hubert, P.; de Leval, X.; Pirotte, B., N-(3-Arylaminopyridin-4-yl)alkanesulfonamides as pyridine analogs of nimesulide: Cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. Eur J Med Chem 2014, 74, 12-22.
55. Wuest, F.; Kniess, T.; Bergmann, R.; Pietzsch, J., Synthesis and evaluation in vitro and in vivo of a 11C-labeled cyclooxygenase-2 (COX-2) inhibitor. Bioorg Med Chem 2008, 16 (16), 7662-70.
56. Gupta, R. A.; Dubois, R. N., Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001, 1 (1), 11-21.
57. Minghetti, L., Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem 2007, 42, 127-41.
58. Uddin, M. J.; Crews, B. C.; Blobaum, A. L.; Kingsley, P. J.; Gorden, D. L.; McIntyre, J. O.; Matrisian, L. M.; Subbaramaiah, K.; Dannenberg, A. J.; Piston, D. W.; Marnett, L. J., Selective Visualization of Cyclooxygenase-2 in Inflammation and Cancer by Targeted Fluorescent Imaging Agents. Cancer Res 2010, 70 (9), 3618-3627.
59. Shi, W.; Li, F.; Li, H.; Xu, Y.; Zeng, Q., Evaluation of human glioma using in-vivo proton magnetic resonance spectroscopy combined with expression of cyclooxygenase-2: a preliminary clinical trial. Neuroreport 2017, 28 (7), 414-420.
60. Shono, T.; Tofilon, P. J.; Bruner, J. M.; Owolabi, O.; Lang, F. F., Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001, 61 (11), 4375-81.
61. Wehling, M., Non-steroidal anti-inflammatory drug use in chronic pain conditions with special emphasis on the elderly and patients with relevant comorbidities: management and mitigation of risks and adverse effects. Eur J Clin Pharmacol 2014, 70 (10), 1159-1172.
62. Sortino, S.; Martínez, L. J.; Marconi, G., On the photophysical and photochemical behavior of fenbufen: a study in homogeneous media and micellar environments New J. Chem. 2001, 25 (7), 975-980.
63. Srinivas, C.; Raju, C. M. H.; Acharyulu, P. V. R., A simple procedure for the isolation of gamma-oxobenzenebutanoic acid derivatives: Application to the synthesis of fenbufen. Org Process Res Dev 2004, 8 (2), 291-292.
64. Pomykalski, A.; Hopkala, H., Applications of derivative UV spectrophotometry for the determinations of fenbufen and ketoprofen in pharmaceutical preparations. Acta Pol Pharm 2005, 62 (3), 171-6.
65. Chiang, L. W.; Pei, K.; Chen, S. W.; Huang, H. L.; Lin, K. J.; Yen, T. C.; Yu, C. S., Combining a Solution-Phase Derived Library with In-Situ Cellular Bioassay: Prompt Screening of Amide-Forming Minilibraries Using MTT Assay. Chem Pharm Bull 2009, 57 (7), 714-718.
66. Lin, K. I.; Yang, C. H.; Huang, C. W.; Jian, J. Y.; Huang, Y. C.; Yu, C. S., Synthesis and structure-activity relationships of fenbufen amide analogs. Molecules 2010, 15 (12), 8796-803.
67. Huang, H. L.; Yeh, C. N.; Lee, W. Y.; Huang, Y. C.; Chang, K. W.; Lin, K. J.; Tien, S. F.; Su, W. C.; Yang, C. H.; Chen, J. T.; Lin, W. J.; Fan, S. S.; Yu, C. S., [I-123]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013, 34 (13), 3355-3365.
68. Huang, Y. C.; Chang, Y. C.; Yeh, C. N.; Yu, C. S., Synthesis and Biological Evaluation of an (18)Fluorine-Labeled COX Inhibitor--[(18)F]Fluorooctyl Fenbufen Amide--For Imaging of Brain Tumors. Molecules 2016, 21 (3), 387.
69. N.D.C., Population Projections for R.O.C. (Taiwan):2016~2060. National Development Council, Taipei City 2016, 90.
70. Ravina, B.; Eidelberg, D.; Ahlskog, J. E.; Albin, R. L.; Brooks, D. J.; Carbon, M.; Dhawan, V.; Feigin, A.; Fahn, S.; Guttman, M.; Gwinn-Hardy, K.; McFarland, H.; Innis, R.; Katz, R. G.; Kieburtz, K.; Kish, S. J.; Lange, N.; Langston, J. W.; Marek, K.; Morin, L.; Moy, C.; Murphy, D.; Oertel, W. H.; Oliver, G.; Palesch, Y.; Powers, W.; Seibyl, J.; Sethi, K. D.; Shults, C. W.; Sheehy, P.; Stoessl, A. J.; Holloway, R., The role of radiotracer imaging in Parkinson disease. Neurology 2005, 64 (2), 208-15.
71. Chen, W.; Silverman, D. H.; Delaloye, S.; Czernin, J.; Kamdar, N.; Pope, W.; Satyamurthy, N.; Schiepers, C.; Cloughesy, T., 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006, 47 (6), 904-11.
72. Kung, M. P.; Stevenson, D. A.; Plossl, K.; Meegalla, S. K.; Beckwith, A.; Essman, W. D.; Mu, M.; Lucki, I.; Kung, H. F., [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 1997, 24 (4), 372-80.
73. Reader, T. A.; Dewar, K. M., Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: implications for human Parkinson's disease. Neurochem Int 1999, 34 (1), 1-21.
74. Levin, O. S.; Iunishchenko, N. A.; Dudarova, M. A., Efficacy of acatinol memantine in mild cognitive disorder. Zh Nevrol Psikhiatr Im S S Korsakova 2009, 109 (7), 36-42.
75. Araujo, D. M.; Cherry, S. R.; Tatsukawa, K. J.; Toyokuni, T.; Kornblum, H. I., Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease. Exp Neurol 2000, 166 (2), 287-97.
76. Fang, P.; Wu, C. Y.; Liu, Z. G.; Wan, W. X.; Wang, T. S.; Chen, S. D.; Chen, Z. P.; Zhou, X., The preclinical pharmacologic study of dopamine transporter imaging agent [99mTc]TRODAT-1. Nucl Med Biol 2000, 27 (1), 69-75.
77. Chinta, S. J.; Andersen, J. K., Dopaminergic neurons. Int J Biochem Cell Biol 2005, 37 (5), 942-6.
78. Brooks, D. J., Molecular imaging of dopamine transporters. Ageing Res Rev 2016, 30, 114-21.
79. Abi-Dargham, A.; Kegeles, L. S.; Zea-Ponce, Y.; Mawlawi, O.; Martinez, D.; Mitropoulou, V.; O'Flynn, K.; Koenigsberg, H. W.; Van Heertum, R.; Cooper, T.; Laruelle, M.; Siever, L. J., Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide. Biol Psychiatry 2004, 55 (10), 1001-6.
80. Brooks, D. J., Imaging approaches to Parkinson disease. J Nucl Med 2010, 51 (4), 596-609.
81. Farn, S. S., Study of manufacture and quality control of radiopharmaceuticals in Brookhaven National Laboratory. INER, Taoyuan City 2005.
82. Geldenhuys, W. J.; Mohammad, A. S.; Adkins, C. E.; Lockman, P. R., Molecular determinants of blood-brain barrier permeation. Ther Deliv 2015, 6 (8), 961-71.
83. Pardridge, W. M., Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012, 32 (11), 1959-72.
84. Booij, J.; de Bruin, K.; Gunning, W. B., Repeated administration of D-amphetamine induces loss of [123I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study. Nucl Med Biol 2006, 33 (3), 409-11.
85. Meegalla, S. K.; Plossl, K.; Kung, M. P.; Stevenson, D. A.; Mu, M.; Kushner, S.; Liable-Sands, L. M.; Rheingold, A. L.; Kung, H. F., Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents. J Med Chem 1998, 41 (4), 428-36.
86. Mozley, P. D.; Stubbs, J. B.; Plossl, K.; Dresel, S. H.; Barraclough, E. D.; Alavi, A.; Araujo, L. I.; Kung, H. F., Biodistribution and dosimetry of TRODAT-1: a technetium-99m tropane for imaging dopamine transporters. J Nucl Med 1998, 39 (12), 2069-76.
87. Ma, K. H.; Huang, W. S.; Chen, C. H.; Lin, S. Z.; Wey, S. P.; Ting, G.; Wang, S. D.; Liu, H. W.; Liu, J. C., Dual SPECT of dopamine system using [99mTc]TRODAT-1 and [123I]IBZM in normal and 6-OHDA-lesioned formosan rock monkeys. Nucl Med Biol 2002, 29 (5), 561-7.
88. Dresel, S. H.; Kung, M. P.; Plossl, K.; Meegalla, S. K.; Kung, H. F., Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats. Eur J Nucl Med 1998, 25 (1), 31-9.
89. Farn, S. S. Critical Assessment of Chemical, Manufacturing and Quality Control Analysis of Tc-99m TRODAT-1; INER: Taoyuan city, 2016.
90. Vladimir Stepanov; Raisa Krasikova; Liina Raus; Olavi Loog; Hiltunen, J.; Halldina, C., An ef fi cient one-step radiosynthesis of [18F]FE-PE2I, a PET radioligand for imaging of dopamine transporters. J. Label Compd. Radiopharm 2012, 55, 206-210.
91. Seeman, P., Brain dopamine receptors. Pharmacol Rev 1980, 32 (3), 229-313.
92. Beaulieu, M., Clinical importance of D-1 and D-2 receptors. Can J Neurol Sci 1987, 14 (3 Suppl), 402-6.
93. Seeman, P.; Van Tol, H. H., Dopamine receptor pharmacology. Trends Pharmacol Sci 1994, 15 (7), 264-70.
94. Kung, H. F.; Kasliwal, R.; Pan, S. G.; Kung, M. P.; Mach, R. H.; Guo, Y. Z., Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)- and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N- [(1-ethyl-2-pyrrolidinyl)methyl]benzamide. J Med Chem 1988, 31 (5), 1039-43.
95. Brucke, T.; Podreka, I.; Angelberger, P.; Wenger, S.; Topitz, A.; Kufferle, B.; Muller, C.; Deecke, L., Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 1991, 11 (2), 220-8.
96. Tatsch, K.; Schwarz, J.; Oertel, W. H.; Kirsch, C. M., SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease. Nucl Med Commun 1991, 12 (8), 699-707.
97. Chiron, C.; Bulteau, C.; Loc'h, C.; Raynaud, C.; Garreau, B.; Syrota, A.; Maziere, B., Dopaminergic D2 receptor SPECT imaging in Rett syndrome: increase of specific binding in striatum. J Nucl Med 1993, 34 (10), 1717-21.
98. Ichise, M.; Toyama, H.; Fornazzari, L.; Ballinger, J. R.; Kirsh, J. C., Iodine-123-IBZM dopamine D2 receptor and technetium-99m-HMPAO brain perfusion SPECT in the evaluation of patients with and subjects at risk for Huntington's disease. J Nucl Med 1993, 34 (8), 1274-81.
99. Laruelle, M.; Iyer, R. N.; al-Tikriti, M. S.; Zea-Ponce, Y.; Malison, R.; Zoghbi, S. S.; Baldwin, R. M.; Kung, H. F.; Charney, D. S.; Hoffer, P. B.; Innis, R. B.; Bradberry, C. W., Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 1997, 25 (1), 1-14.
100. Heiss, W. D.; Herholz, K., Brain receptor imaging. J Nucl Med 2006, 47 (2), 302-12.
101. Halldin, C.; Stone-Elander, S.; Farde, L., Synthesis of [C-11] SCH 23390, a dopamine D-1 receptor antagonist, for use in in vivo receptor studies with PET. Journal of labelled compounds & radiopharmaceuticals 1986, 23 (10-12), 1405-1406.
102. Ehrin, E.; Farde, L.; de Paulis, T.; Eriksson, L.; Greitz, T.; Johnstrom, P.; Litton, J. E.; Nilsson, J. L.; Sedvall, G.; Stone-Elander, S.; et al., Preparation of 11C-labelled Raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int J Appl Radiat Isot 1985, 36 (4), 269-73.
103. Farde, L.; Ehrin, E.; Eriksson, L.; Greitz, T.; Hall, H.; Hedstrom, C. G.; Litton, J. E.; Sedvall, G., Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A 1985, 82 (11), 3863-7.
104. Farde, L.; Hall, H.; Ehrin, E.; Sedvall, G., Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986, 231 (4735), 258-61.
105. Wagner, H. N., Jr.; Burns, H. D.; Dannals, R. F.; Wong, D. F.; Langstrom, B.; Duelfer, T.; Frost, J. J.; Ravert, H. T.; Links, J. M.; Rosenbloom, S. B.; Lukas, S. E.; Kramer, A. V.; Kuhar, M. J., Imaging dopamine receptors in the human brain by positron tomography. Science 1983, 221 (4617), 1264-6.
106. Wong, D. F.; Wagner, H. N., Jr.; Dannals, R. F.; Links, J. M.; Frost, J. J.; Ravert, H. T.; Wilson, A. A.; Rosenbaum, A. E.; Gjedde, A.; Douglass, K. H.; et al., Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 1984, 226 (4681), 1393-6.
107. Arnett, C. D.; Fowler, J. S.; Wolf, A. P.; Shiue, C. Y.; McPherson, D. W., [18F]-N-Methylspiroperidol: the radioligand of choice for PETT studies of the dopamine receptor in human brain. Life Sci 1985, 36 (14), 1359-66.
108. Mijnster, M. J.; Isovich, E.; Flugge, G.; Fuchs, E., Localization of dopamine receptors in the tree shrew brain using [3H]-SCH23390 and [125I]-epidepride. Brain Res 1999, 841 (1-2), 101-13.
109. Erlandsson, K.; Bressan, R. A.; Mulligan, R. S.; Ell, P. J.; Cunningham, V. J.; Pilowsky, L. S., Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I]epidepride: resolving conflicting findings. Neuroimage 2003, 19 (3), 1205-14.
110. Hall, H.; Halldin, C.; Jerning, E.; Osterlund, M.; Farde, L.; Sedvall, G., Autoradiographic comparison of [125I]epidepride and [125I]NCQ 298 binding to human brain extrastriated dopamine receptors. Nucl Med Biol 1997, 24 (5), 389-93.
111. Leslie, W. D.; Abrams, D. N.; Greenberg, C. R.; Hobson, D., Comparison of iodine-123-epidepride and iodine-123-IBZM for dopamine D2 receptor imaging. J Nucl Med 1996, 37 (10), 1589-91.
112. Lee, C. S.; Samii, A.; Sossi, V.; Ruth, T. J.; Schulzer, M.; Holden, J. E.; Wudel, J.; Pal, P. K.; de la Fuente-Fernandez, R.; Calne, D. B.; Stoessl, A. J., In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 2000, 47 (4), 493-503.
113. Kushner, S. A.; McElgin, W. T.; Kung, M. P.; Mozley, P. D.; Plossl, K.; Meegalla, S. K.; Mu, M.; Dresel, S.; Vessotskie, J. M.; Lexow, N.; Kung, H. F., Kinetic modeling of [99mTc]TRODAT-1: a dopamine transporter imaging agent. J Nucl Med 1999, 40 (1), 150-158.
114. Langer, O.; Halldin, C.; Dolle, F.; Swahn, C. G.; Olsson, H.; Karlsson, P.; Hall, H.; Sandell, J.; Lundkvist, C.; Vaufrey, F.; Loc'h, C.; Crouzel, C.; Maziere, B.; Farde, L., Carbon-11 epidepride: a suitable radioligand for PET investigation of striatal and extrastriatal dopamine D2 receptors. Nucl Med Biol 1999, 26 (5), 509-18.
115. Huang, W. S.; Lin, S. Z.; Lin, J. C.; Wey, S. P.; Ting, G.; Liu, R. S., Evaluation of early-stage Parkinson's disease with 99mTc-TRODAT-1 imaging. J Nucl Med 2001, 42 (9), 1303-8.
116. Kung, H. F.; Ploessi, K., [99mTc]TRODAT dopamine transporter imaging agent for SPECT. Targeted Molecular Imaging 2012, 253-261.
117. Meegalla, S. K.; Plossl, K.; Kung, M. P.; Chumpradit, S.; Stevenson, D. A.; Kushner, S. A.; McElgin, W. T.; Mozley, P. D.; Kung, H. F., Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J Med Chem 1997, 40 (1), 9-17.
118. Singh, S., Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem Rev 2000, 100 (3), 925-1024.
119. Dahal, R. A.; Pramod, A. B.; Sharma, B.; Krout, D.; Foster, J. D.; Cha, J. H.; Cao, J.; Newman, A. H.; Lever, J. R.; Vaughan, R. A.; Henry, L. K., Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site. J Biol Chem 2014, 289 (43), 29712-27.
120. Foster, J. D.; Vaughan, R. A., Phosphorylation mechanisms in dopamine transporter regulation. J Chem Neuroanat 2017, 83-84, 10-18.
121. Madras, B. K.; Jones, A. G.; Mahmood, A.; Zimmerman, R. E.; Garada, B.; Holman, B. L.; Davison, A.; Blundell, P.; Meltzer, P. C., Technepine: a high-affinity 99m-technetium probe to label the dopamine transporter in brain by SPECT imaging. Synapse 1996, 22 (3), 239-46.
122. Cesati, R. R., 3rd; Tamagnan, G.; Baldwin, R. M.; Zoghbi, S. S.; Innis, R. B.; Kula, N. S.; Baldessarini, R. J.; Katzenellenbogen, J. A., Synthesis of cyclopentadienyltricarbonyl rhenium phenyltropanes by double ligand transfer: organometallic ligands for the dopamine transporter. Bioconjug Chem 2002, 13 (1), 29-39.
123. Johannsen, B.; Pietzsch, H. J., Development of technetium-99m-based CNS receptor ligands: have there been any advances? Eur J Nucl Med Mol Imaging 2002, 29 (2), 263-75.
124. Kung, H. F.; Kim, H. J.; Kung, M. P.; Meegalla, S. K.; Plossl, K.; Lee, H. K., Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med 1996, 23 (11), 1527-30.
125. Kung, H. F.; Meegalla, S.; Kung, M. P.; Plössl, K., Development of 99mTc-labelled complexes for imaging dopamine transporters in the brain. Transition Metal Chemistry 1998, 23, 531-536.
126. Kung, H. F., Development of Tc-99m labeled tropanes: TRODAT-1, as a dopamine transporter imaging agent. Nucl Med Biol 2001, 28 (5), 505-8.
127. Madras, B. K.; Meltzer, P. C.; Liang, A. Y.; Elmaleh, D. R.; Babich, J.; Fischman, A. J., Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse 1998, 29 (2), 93-104.
128. Halldin, C.; Erixon-Lindroth, N.; Pauli, S.; Chou, Y. H.; Okubo, Y.; Karlsson, P.; Lundkvist, C.; Olsson, H.; Guilloteau, D.; Emond, P.; Farde, L., [(11)C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain. Eur J Nucl Med Mol Imaging 2003, 30 (9), 1220-30.
129. Jucaite, A.; Odano, I.; Olsson, H.; Pauli, S.; Halldin, C.; Farde, L., Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study. Eur J Nucl Med Mol Imaging 2006, 33 (6), 657-68.
130. Leroy, C.; Comtat, C.; Trebossen, R.; Syrota, A.; Martinot, J. L.; Ribeiro, M. J., Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J Nucl Med 2007, 48 (4), 538-46.
131. Seki, C.; Ito, H.; Ichimiya, T.; Arakawa, R.; Ikoma, Y.; Shidahara, M.; Maeda, J.; Takano, A.; Takahashi, H.; Kimura, Y.; Suzuki, K.; Kanno, I.; Suhara, T., Quantitative analysis of dopamine transporters in human brain using [11C]PE2I and positron emission tomography: evaluation of reference tissue models. Ann Nucl Med 2010, 24 (4), 249-60.
132. Schou, M.; Steiger, C.; Varrone, A.; Guilloteau, D.; Halldin, C., Synthesis, radiolabeling and preliminary in vivo evaluation of [18F]FE-PE2I, a new probe for the dopamine transporter. Bioorg Med Chem Lett 2009, 19 (16), 4843-5.
133. Varrone, A.; Steiger, C.; Schou, M.; Takano, A.; Finnema, S. J.; Guilloteau, D.; Gulyas, B.; Halldin, C., In vitro autoradiography and in vivo evaluation in cynomolgus monkey of [18F]FE-PE2I, a new dopamine transporter PET radioligand. Synapse 2009, 63 (10), 871-80.
134. Sasaki, T.; Ito, H.; Kimura, Y.; Arakawa, R.; Takano, H.; Seki, C.; Kodaka, F.; Fujie, S.; Takahata, K.; Nogami, T.; Suzuki, M.; Fujiwara, H.; Takahashi, H.; Nakao, R.; Fukumura, T.; Varrone, A.; Halldin, C.; Nishikawa, T.; Suhara, T., Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med 2012, 53 (7), 1065-73.
135. Shingai, Y.; Tateno, A.; Arakawa, R.; Sakayori, T.; Kim, W.; Suzuki, H.; Okubo, Y., Age-related decline in dopamine transporter in human brain using PET with a new radioligand [(1)(8)F]FE-PE2I. Ann Nucl Med 2014, 28 (3), 220-6.
136. Kung, H. F.; Guo, Y. Z.; Billings, J.; Xu, X.; Mach, R. H.; Blau, M.; Ackerhalt, R. E., Preparation and biodistribution of [125I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. Int J Rad Appl Instrum B 1988, 15 (2), 195-201.
137. Kung, H. F.; Pan, S.; Kung, M. P.; Billings, J.; Kasliwal, R.; Reilley, J.; Alavi, A., In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 1989, 30 (1), 88-92.
138. Kung, H. F.; Alavi, A.; Chang, W.; Kung, M. P.; Keyes, J. W., Jr.; Velchik, M. G.; Billings, J.; Pan, S.; Noto, R.; Rausch; et al., In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 1990, 31 (5), 573-9.
139. Abi-Dargham, A.; van de Giessen, E.; Slifstein, M.; Kegeles, L. S.; Laruelle, M., Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry 2009, 65 (12), 1091-3.
140. Murnane, K. S.; Howell, L. L., Neuroimaging and drug taking in primates. Psychopharmacology (Berl) 2011, 216 (2), 153-71.
141. Kugaya, A.; Fujita, M.; Innis, R. B., Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders. Ann Nucl Med 2000, 14 (1), 1-9.
142. Tsartsalis, S.; Tournier, B. B.; Aoun, K.; Habiby, S.; Pandolfo, D.; Dimiziani, A.; Ginovart, N.; Millet, P., A single-scan protocol for absolute D2/3 receptor quantification with [(123)I]IBZM SPECT. Neuroimage 2017, 147, 461-472.
143. Meyer, P. T.; Sattler, B.; Winz, O. H.; Fundke, R.; Oehlwein, C.; Kendziorra, K.; Hesse, S.; Schaefer, W. M.; Sabri, O., Kinetic analyses of [123I]IBZM SPECT for quantification of striatal dopamine D2 receptor binding: a critical evaluation of the single-scan approach. Neuroimage 2008, 42 (2), 548-58.
144. Kung, M. P.; Liu, B. L.; Yang, Y. Y.; Billings, J. J.; Kung, H. F., A kit formulation for preparation of iodine-123-IBZM: a new CNS D-2 dopamine receptor imaging agent. J Nucl Med 1991, 32 (2), 339-42.
145. Kung, M. P.; Kung, H. F., Peracetic acid as a superior oxidant for preparation of [123I]IBZM: A potential dopamine D‐2 receptor imaging agent Journal of Labelled Compounds and Radiopharmaceuticals 1989, 27 (6), 691-700.
146. Zea-Ponce, Y.; Laruelle, M., Synthesis of [123I]IBZM: a reliable procedure for routine clinical studies. Nucl Med Biol 1999, 26 (6), 661-5.
147. Baldwin, R. M.; Fu, X.; Kula, N. S.; Baldessarini, R. J.; Amici, L.; Innis, R. B.; Tamagnan, G. D., Synthesis and affinity of a possible byproduct of electrophilic radiolabeling of [123I]IBZM. Bioorg Med Chem Lett 2003, 13 (22), 4015-7.
148. Liu, K. T.; Yang, H. H.; Hsia, Y. C.; Yang, A. S.; Su, C. Y.; Lin, T. S.; Shen, L. H., Development and Validation of an HPLC Method for the Purity Assay of BZM, the Precursor of Striatal Dopaminergic D2/D3 Receptor SPECT Imaging Agent [123I]IBZM (Iodobenzamide). Journal of Food and Drug Analysis 2008, 15 (5), 28-39.
149. Montalbetti, C. A. G. N.; Falque, V., Amide bond formation and peptide coupling. Tetrahedron 2005, 61 (46), 10827-10852.
150. Kil, K. E.; Poutiainen, P.; Zhang, Z. D.; Zhu, A. J.; Choi, J. K.; Jokivarsi, K.; Brownell, A. L., Radiosynthesis and Evaluation of an F-18-Labeled Positron Emission Tomography (PET) Radioligand for Metabotropic Glutamate Receptor Subtype 4 (mGlu(4)). J Med Chem 2014, 57 (21), 9130-9138.
151. Yang, H.; Murigi, F. N.; Wang, Z.; Li, J.; Jin, H.; Tu, Z., Synthesis and in vitro characterization of cinnoline and benzimidazole analogues as phosphodiesterase 10A inhibitors. Bioorg Med Chem Lett 2015, 25 (4), 919-24.
152. Hodson, H. F.; Madge, D. J.; Widdowson, D. A., Regiospecific Synthesis of 4-Fluoro-Delta(4),3-Keto Steroids Using Cesium Fluoroxysulfate. J Chem Soc Perk T 1 1995, (23), 2965-2968.
153. Adam, M. J.; Ruth, T. J.; Jivan, S.; Pate, B. D., Fluorination of Aromatic-Compounds with F2 and Acetyl Hypofluorite - Synthesis of F-18-Aryl Fluorides by Cleavage of Aryl-Tin Bonds. J Fluorine Chem 1984, 25 (3), 329-337.
154. Espinet, P.; Echavarren, A. M., The mechanisms of the Stille reaction. Angew Chem Int Ed Engl 2004, 43 (36), 4704-34.
155. Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H., Selectfluor: Mechanistic insight and applications. Angew Chem Int Edit 2005, 44 (2), 192-212.
156. van Steenis, J. H.; van der Gen, A., Synthesis of terminal monofluoro olefins. J Chem Soc Perk T 1 2002, (19), 2117-2133.
157. Furuya, T.; Strom, A. E.; Ritter, T., Silver-Mediated Fluorination of Functionalized Aryl Stannanes. J Am Chem Soc 2009, 131 (5), 1662-+.
158. Baranczewski, P.; Stanczak, A.; Sundberg, K.; Svensson, R.; Wallin, A.; Jansson, J.; Garberg, P.; Postlind, H., Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep 2006, 58 (4), 453-472.
159. Yeh, C. N.; Chang, C. W.; Chung, Y. H.; Tien, S. W.; Chen, Y. R.; Chen, T. W.; Huang, Y. C.; Wang, H. E.; Chou, Y. C.; Chen, M. H.; Chiang, K. C.; Huang, W. S.; Yu, C. S., Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. Eur J Pharm Sci 2017, 107, 217-229.
160. Smith, W. L.; Urade, Y.; Jakobsson, P. J., Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011, 111 (10), 5821-65.
161. Huang, H. L.; Yeh, C. N.; Lee, W. Y.; Huang, Y. C.; Chang, K. W.; Lin, K. J.; Tien, S. F.; Su, W. C.; Yang, C. H.; Chen, J. T.; Lin, W. J.; Fan, S. S.; Yu, C. S., [123I]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013, 34 (13), 3355-65.
162. Husain, A.; Ahmad, A.; Alam, M. M.; Ajmal, M.; Ahuja, P., Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur J Med Chem 2009, 44 (9), 3798-804.
163. Adinolfi, B.; Romanini, A.; Vanni, A.; Martinotti, E.; Chicca, A.; Fogli, S.; Nieri, P., Anticancer activity of anandamide in human cutaneous melanoma cells. Eur J Pharmacol 2013, 718 (1-3), 154-9.
164. Tsujikawa, K.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y. T.; Inoue, H., In vitro stability and metabolism of salvinorin A in rat plasma. Xenobiotica 2009, 39 (5), 391-8.
165. Chung, Y. H.; Hsu, P. H.; Huang, C. W.; Hsieh, W. C.; Huang, F. T.; Chang, W. C.; Chiu, H.; Hsu, S. T.; Yen, T. C., Evaluation of prognostic integrin alpha2beta1 PET tracer and concurrent targeting delivery using focused ultrasound for brain glioma detection. Mol Pharm 2014, 11 (11), 3904-3914.
166. Boer, F., Drug handling by the lungs. Brit J Anaesth 2003, 91 (1), 50-60.
167. Quan, Q. M.; Xie, J.; Gao, H. K.; Yang, M.; Zhang, F.; Liu, G.; Lin, X.; Wang, A.; Eden, H. S.; Lee, S.; Zhang, G. X.; Chen, X. Y., HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. Mol Pharmaceut 2011, 8 (5), 1669-1676.
168. Yue, J.; Liu, S.; Wang, R.; Hu, X. L.; Xie, Z. G.; Huang, Y. B.; Jing, X. B., Transferrin-Conjugated Micelles: Enhanced Accumulation and Antitumor Effect for Transferrin-Receptor-Overexpressing Cancer Models. Mol Pharmaceut 2012, 9 (7), 1919-1931.
169. Jeong, H.; Huh, M.; Lee, S. J.; Koo, H.; Kwon, I. C.; Jeong, S. Y.; Kim, K., Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 2011, 1, 230-9.
170. Tietz, O.; Wuest, M.; Marshall, A.; Glubrecht, D.; Hamann, I.; Wang, M.; Bergman, C.; Way, J. D.; Wuest, F., PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res 2016, 6 (1), 37.
171. Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. T.; Scozzafava, A.; Klebe, G., Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 2004, 47 (3), 550-7.
172. Vraka, C.; Nics, L.; Wagner, K. H.; Hacker, M.; Wadsak, W.; Mitterhauser, M., LogP, a yesterday's value? Nucl Med Biol 2017, 50, 1-10.
173. Muehlbacher, M.; Spitzer, G. M.; Liedl, K. R.; Kornhuber, J., Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des 2011, 25 (12), 1095-106.
174. Brown, N., In Silico Medicinal Chemistry: Computational Methods to Support Drug Design. Royal Society of Chemistry: Cambridge, UK, 2016.
175. QSAR Analysis of [68Ga]ICPAT-NOTA Molecular Science Center (MSC),GGA Corp. amd VtR Incorporation 2018.
176. Wang, K. H.; Penmatsa, A.; Gouaux, E., Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 2015, 521 (7552), 322-7.
177. Li, C. C.; Yeh, Y. H.; Chang, C. J.; Farn, S. S.; Liao, M. H.; Lin, W. J., Development of Radiochemical purity analysis of 123I-IBZM by HPLC. INER Research Report 2009.
178. Douglas, A.; Skoog, F.; Holler, J.; Nieman, T. A., Principles of Instrumental Analysis, 5th ed. Thompson Learning. Pacific Grove, C.A., USA 1998.
179. summary of product characteristics of [123I] IBZM. Amersham Health B.V.. 2001.
180. Liu, Y. M., Synthesis and Biological Evaluation of 18F-Labeled Octyl Amide Fenbufen as Potential PET Imaging Agents for In Vivo Applications. Master Report, National Tsing Hua University 2016.
181. Tien, S.-W. Preparation and biological assessment of 4-boron pinacol methyl [18F] fluorofenbufen for potential application in positron emission tomography and boron neutron capture therapy. National Tsing Hua University, Tiwan R.O.C, 2015.
182. Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O., Predicting the Formation and Stability of Amorphous Small Molecule Binary Mixtures from Computationally Determined Flory-Huggins Interaction Parameter and Phase Diagram. Mol Pharmaceut 2010, 7 (3), 795-804.
183. Cox, L. R.; DeBoos, G. A.; Fullbrook, J. J.; Percy, J. M.; Spencer, N., Applying asymmetric dihydroxylation to the synthesis of difluorinated carbohydrate analogues: a 1,1-difluoro-1-deoxy-D-xylulose. Tetrahedron: Asymmetry 2005, 16 (2), 347-359.
184. Rami-Mark, C.; Bornatowicz, B.; Fink, C.; Otter, P.; Ungersboeck, J.; Vraka, C.; Haeusler, D.; Nics, L.; Spreitzer, H.; Hacker, M.; Mitterhauser, M.; Wadsak, W., Synthesis, radiosynthesis and first in vitro evaluation of novel PET-tracers for the dopamine transporter: [(11)C]IPCIT and [(18)F]FE@IPCIT. Bioorg Med Chem 2013, 21 (24), 7562-9.
185. Lambert, C.; Mease, R. C.; Avren, L.; Le, T.; Sabet, H.; McAfee, J. G., Radioiodinated (aminostyryl)pyridinium (ASP) dyes: new cell membrane probes for labeling mixed leukocytes and lymphocytes for diagnostic imaging. Nucl Med Biol 1996, 23 (4), 417-27.
186. Kang, J. M., The Synthesis of 1,4,7-Triazacyclononane Conjugated Amyloid-phillic Compound and Its Binding Affinity to the β-Amyloid Fibril. Bulletin Of The Korean Chemical Society 2003, 24 (9), 1403-1406.
187. Gai, Y.; Hu, Z.; Rong, Z.; Ma, X.; Xiang, G., A Practical Route for the Preparation of 1,4,7-Triazacyclononanyl Diacetates with a Hydroxypyridinonate Pendant Arm. Molecules 2015, 20 (10), 19393-405.
188. Samuels, E. R.; Sevrioukova, I., Inhibition of Human CYP3A4 by Rationally Designed Ritonavir-Like Compounds: Impact and Interplay of the Side Group Functionalities. Mol Pharm 2018, 15 (1), 279-288.
189. Chong, H. S.; Mhaske, S.; Lin, M.; Bhuniya, S.; Song, H. A.; Brechbiel, M. W.; Sun, X., Novel synthetic ligands for targeted PET imaging and radiotherapy of copper. Bioorg Med Chem Lett 2007, 17 (22), 6107-10.
190. Carroll, F. I.; Gao, Y. G.; Rahman, M. A.; Abraham, P.; Parham, K.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J., Synthesis, ligand binding, QSAR, and CoMFA study of 3 beta-(p-substituted phenyl)tropane-2 beta-carboxylic acid methyl esters. J Med Chem 1991, 34 (9), 2719-25.
191. Ivanova, V.; Yankov, D.; Kabaivanova, L.; Pashkoulov, D., Simultaneous biosynthesis and purification of two extracellular Bacillus hydrolases in aqueous two-phase systems. Microbiol Res 2001, 156 (1), 19-30.
192. Lin, K. L.; Farn, S. S.; Chang, K. W.; Yu, H. W.; Liu, J. Y.; Chang, Y.; Chang, W. H.; Li, C. Y.; Hsu, C. F.; Lin, W. J., Synthesis of new derivatives for the dopamine transporter:[68Ga]TRODAT-2. Research Report, INER 2017.