研究生: |
林建宏 Chien-Hung Lin |
---|---|
論文名稱: |
超音波奈米轉印技術 Ultrasonic Nanoimprint Lithography Technology |
指導教授: |
陳榮順
Rongshun Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 奈米轉印 、超音波 、奈米加工 、聚合物變形 |
外文關鍵詞: | nanoimprint, ultrasonic, nanofabrication, polymer deformation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文開發新穎的超音波奈米轉印技術及機台,以超音波取代一般奈米轉印之加熱源,使得轉印之聚合物受熱軟化或融化,將模仁的圖案成功地轉印至聚合物上,解決傳統熱壓式奈米轉印之加熱、冷卻循環的熱損失及時間損耗問題。本論文中超音波振動的產生主要是藉由三明治結構的換能器;壓電陶瓷圓盤夾在二個鋁金屬塊中間,再藉由放大器及喇叭的傳遞,最後透過模仁使得聚合物因為超音波振動受熱而變形。此外利用數值模擬軟體CDF-RC,探討模仁幾何尺寸與聚合物厚度對於超音波奈米轉印之填充流動的影響,由於此問題具有多重物理量之耦合且複雜,所以本文將模擬的問題簡化並且分成兩個部份探討:一是超音波振動對聚合物產生的溫度分佈及流動模擬,一是聚合物在等溫環境下填充變形及速度分佈模擬。結合兩個部份的模擬結果,可以推論超音波奈米轉印下聚合物的流動行為。另外,藉由自行開發設計的機台進行奈米轉印實驗,實驗結果顯示超音波振動的能量可以透過模仁傳遞至聚合物,使模仁上的圖案轉印至聚合物。本論文提出的新穎的奈米轉印方法—超音波奈米轉印技術具有潛力成為高生產力、節能且便宜的奈米加工技術。
In this study, we report an ultrasonic nanoimprint lithography (U-NIL) method which can overcome the drawbacks of energy consumption and long process time occurred in conventional NIL methods. Instead of using heaters in conventional NIL, the proposed U-NIL employs an ultrasonic source located on the top of mold to generate high frequency vibration causing the increase of temperature to soften and to melt the thermoplastic polymer. The ultrasonic source is induced by the transducer consisting of a number of piezoelectric ceramic discs, sandwiched between two aluminum metal blocks. A novel ultrasonic NIL technology and ultrasonic imprinted machine have been developed and set up. To investigate the effects of imprinted resist thickness and mold geometries on the polymer flow and the temperature distribution of U-NIL through numerical have been simulated. In simulations, the velocity fields in imprinting stage and the temperature distributions in ultrasonic vibrations are performed under the variations of convexity width, cavity width, and thickness of imprinted polymer resist. Moreover, the combined effects of the imprinting stage and ultrasonic vibrations in U-NIL process are discussed. The experimental results demonstrated that vibratory energy could be concentrated in transferring the topography of mold’s surface into the polymer. We conclude that the proposed U-NIL process has the potential to become a novel nanoimprinting method.
[1] 川合知二著,圖解奈米科技,工研院奈米中心,2002。
[2] http://www.chem.northwestern.edu/~mkngrp/dpn.htm
[3] http://www.nikon.co.jp/main/eng/portfolio/technology_e/immersion_e/
[4] http://public.itrs.net/
[5] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” Applied Physics Letters, Vol. 67, No. 21, pp. 3114-3116, 1995.
[6] M. Otto, M. Bender, B. Hadam, B. Spangenberg and H. Kurz, “Characterization and application of a UV-based imprint technique,” Microelectric Engineering, Vol. 57-58, pp. 361-366, 2001.
[7] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning,” Proceedings of the SPIE, Vol. 3676, pp. 379-389, 1999.
[8] Y. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Materials Science, Vol. 28, pp. 153-184, 1998.
[9] S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp.835-837, 2002.
[10] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 14, No. 6, pp. 4129-4133, 1996.
[11] S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectronic Engineering, Vol. 35, No. 1-4, pp. 237-240, 1997.
[12] L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Applied Physics Letters, Vol. 71, No. 13, pp. 1881-1883, 1997.
[13] P. R. Krauss and S. Y. Chou, “Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe,” Applied Physics Letters, Vol. 71, No. 21, pp. 3174-3176, 1997.
[14] H. Tan, A. Gilbertson, and S.Y. Chou, “Roller nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 16, No. 6, pp. 3926-3928, 1998.
[15] H. C. Scheer and H. Schulz, “Problems of the nanoimprinting technique for nanometer scale pattern definition,” Journal of Vacuum Science and Technology B, Vol. 16, No. 6, pp. 3917-3921, 1998.
[16] K. Pfeiffer, G. Bleidiessel, G. Gruetzner, H. Schulz, T. Hoffmann, H. C. Scheer, C. M. Sotomayor Torres and J. Ahopelto, “Suitability of new polymer materials with adjustable glass temperature for nano-imprinting,” Microelectronic Engineering, Vol. 46, No. 1-4, pp. 431-434, 1999.
[17] F. Gottschalch, T. Hoffmann, C. M. Sotomayor Torresa, H. Schulz, and H. C. Scheer, “Polymer issues in nanoimprinting technique,” Solid-State Electronics, Vol. 43, No. 6, pp. 1079-1083, 1999.
[18] A. Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud, and H. Launois, “Nanoimprint lithography for a large area pattern replication,” Microelectronic Engineering, Vol. 46, No. 1-4, p 319-322, 1999.
[19] J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 17, No. 6, pp. 2957-2960, 1999.
[20] Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs metal-semiconductor-metal photodetectors fabricated using nanoimprint lithography,” Applied Physics Letters, Vol. 74, No. 16, pp. 2381-2383, 1999.
[21] B. Heidari, I. Maximov, and L. Montelius, “Nanoimprint lithography at the 6 in. wafer scale,” Journal of Vacuum Science and Technology B, Vol. 18, No. 6, pp. 3557-3560, 2000.
[22] T. Haatainen, J. Ahopelto, G. Gruetzner, M. Finck, and K. Pfeiffer, “Step and stamp imprint lithography using a commercial flip chip bonder,” Proceedings of SPIE, Vol. 3997, p.874-880, 2000.
[23] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, “Flow Behaviour of Thin Polymer Films Used for Hot Embossing Lithography,” Microelectronic Engineering, Vol. 54, No. 3-4, pp. 229-245, 2000.
[24] H. Schulz, H. C. Scheer, T. Hoffman, C.M. Sotomayor Torres, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, Ch. Cardinaud, F. Gaboriau, M. C. Peignon, J. Ahopelto, B. Heidari, “New polymer materials for nanoimprinting,” Journal of Vacuum Science and Technology B, Vol. 18, No. 4, pp. 1861-1865, 2000.
[25] L. Montelius, B. Heidari, M. Graczyk, I. Maximov, E. L. Sarwe, and T. G. I. Ling, “Nanoimprint- and UV-lithography: mix&match process for fabrication of interdigitated nanobiosensors,” Microelectronic Engineering, Vol. 53, No. 1, p 521-524, 2000.
[26] B. Faircloth, H. Rohrs, R. Tiberio, R. Ruoff, and R. R. Krchnavek, “Bilayer, nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 18, No. 4, pp. 1866-1873, 2000.
[27] A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectronic Engineering, Vol. 53, No. 1, pp. 175-178, 2000.
[28] H. Schulz, F. Osenberg, J. Engemann, and H. C. Scheer, “Mask fabrication by nanoimprint lithography using anti-sticking layers,” Proceedings of SPIE, Vol. 3996, pp. 244-249, 2000.
[29] D. Y. Khang and H. H. Lee, “Room-temperature imprint lithography by solvent vapor treatment,” Applied Physics Letters, Vol. 76, No. 7, pp. 870-872, 2000.
[30] Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, and M. Sasago, “Study of the resist deformation in nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 19, No. 6, pp. 2811-2815, 2001.
[31] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving nanoimprint lithography stamps for the 10 nm feature,” Proceedings of the 2001 1st IEEE Conference on Nanotechnology, Hawaii, USA, Oct. 28-30, 2001, pp. 17-22.
[32] M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Low temperature nanoimprint lithography using silicon nitride molds,” Microelectronic Engineering, Vol. 57-58, pp. 367-373, 2001.
[33] H. C. Scheer and H. Schulz, “A contribution to the flow behaviour of thin polymer films during hot embossing lithography,” Microelectronic Engineering, Vol. 56, No. 3-4, pp. 311-332, 2001.
[34] D. Lyebyedyev, H. Schulz, H. C. Scheer, and K. Pfeiffer, “Characterisation of new thermosetting polymer materials for nanoimprint lithography,” Materials Science and Engineering C, Vol. 15, No. 1-2, pp. 241-243, 2001.
[35] S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro, and H. Hiroshima, “Room temperature replication in spin on glass by nanoimprint technology,” Journal of Vacuum Science and Technology B, Vol. 19, No. 6, pp. 2801-2805, 2001.
[36] S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, and C. M. Sotomayor Torres, “Nanoimprint lithography: Challenges and prospects,” Nanotechnology, Vol. 12, No. 2, pp. 91-95, 2001.
[37] M. Li, L. Chen, and S. Y. Chou, “Direct three-dimensional patterning using nanoimprint lithography,” Applied Physics Letters, Vol. 78, No. 21, pp. 3322-3324, 2001.
[38] A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H. M. Janssen, and R. P. Sijbesm, “Room-temperature and low-pressure nanoimprint lithography,” Microelectronic Engineering, Vol. 61-62, pp. 371-377, 2002.
[39] C. Gourgon, C. Perret, and G. Micouin, “Electron beam photoresists for nanoimprint lithography,” Microelectronic Engineering, Vol. 61-62, pp. 385-392, 2002.
[40] Y. Igaku, S. Matsui, H. Ishigaki J. -I. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, M. Komuro, and H. Hiroshima, “Room temperature nanoimprint technology using hydrogen silsequioxane (HSQ),” Japanese Journal of Applied Physics, Vol. 41, No. 6 B, pp. 4198-4202, 2002.
[41] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, “Nanoimprinting over topography and multilayer three-dimensional printing,” Journal of Vacuum Science and Technology B, Vol. 20, No. 6, pp. 2881-2886, 2002.
[42] J. H. Jeong, Y. S. Choi1, Y. J. Shin, J. J. Lee, K. T. Park, E. S. Lee, and S. R. Lee, “Flow behavior at the embossing stage of nanoimprint lithography,” Fibers and Polymers, Vol 3, No. 3, pp. 113-119, 2002.
[43] C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Joubert, and J. -P. E. Grolier, “Influence of pattern density in nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol 21, No. 1, pp. 98-105, 2003.
[44] K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C. M. Sotomayor-Torres, H. Schulz, and H. -C. Scheer, “A comparison of thermally and photochemically cross-linked polymers for nanoimprinting,” Microelectronic Engineering, Vol. 67-68, pp. 266-273, 2003.
[45] Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,” Applied Physics Letters, Vol. 83, No. 21, pp. 4417-4419, 2003.
[46] Y. Hirai, S. Yoshida, and N. Takagi, “Defect analysis in thermal nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 21, No. 6, pp. 2765-2770, 2003.
[47] X. Cheng and L. J. Guo, “A combined-nanoimprint-and- photolithography patterning technique,” Microelectronic Engineering, Vol. 71, No. 3-4, pp. 277-282, 2004.
[48] X. Cheng and L. J. Guo, “One-step lithography for various size patterns with a hybrid mask-mold,” Microelectronic Engineering, Vol. 71, No. 3-4, pp. 288-293, 2004.
[49] C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, and R. Pelzer, “Characterization of 8-in. wafers printed by nanoimprint lithography,” Microelectronic Engineering, Vol. 73-74, pp. 172-177, 2004.
[50] M. Wissen, N. Bogdanski, R. Jerzy, Z. E. Berrada, M. Fink, F. Reuther, T. Glinsner, and H.-C. Scheer, “Silanised polymeric working stamps for hot embossing lithography,” Proceedings of SPIE, Vol. 5374, pp. 998-1005, 2004.
[51] Y. Hirai, T. Konishi, T. Yoshikawa, and S. Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 22, No. 6, pp. 3288-3293, 2004.
[52] H. Lee and G. Y. Jung, “UV curing nanoimprint lithography for uniform Layers and mnimized residual layers,” Japanese Journal of Applied Physics, Vol. 43, No. 12, pp. 8369-8373, 2004.
[53] C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200 mm silicon wafers printed by nanoimprint lithography,” Journal of Physics D, Vol. 38, No. 1, pp. 70-73, 2005.
[54] N. Bogdanski, M. Wissen, A. Ziegler, and H. -C. Scheer, “Temperature-reduced nanoimprint lithography for thin and uniform residual layers,” Microelectronic Engineering, Vol. 78-79, No. 1-4, pp. 598-604, 2005.
[55] W. B. Young, “Analysis of the nanoimprint lithography with a viscous model,” Microelectronic Engineering, Vol. 77, No. 3-4, pp. 405-411, 2005.
[56] H. D. Rowland, A. C. Sun, P. R. Schunk and W. P. King, “Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography,” Journal of Micromechanics and Microengineering, Vol. 15, No. 12, pp. 2414-2425, 2005.
[57] H. D. Rowland, W. P. King, A. C. Sun and P. R. Schunk, “Simulations of nonuniform embossing : The effect of asymmetric neighbor cavities on polymer flow during nanoimprint lithography,” Vol. 23, No. 6, pp. 2958-2962, 2005.
[58] 羅金德,超音波加熱壓印微結構的研究,台灣大學碩士論文,民國九十一年。
[59] 董毓才,超音波熱壓印微結構加工參數影響之研究,長庚大學碩士論文,民國九十三年。
[60] J. H. Chang and S. Y. Yang, “Development of fluid-based heating and pressing systems for micro hot embossing,” Microsystem Technologies, Vol. 11, No. 6, pp. 396-403, 2005.
[61] H. Mekaru, O. Nakamura, O. Maruyama, R. Maeda, and T. Hattori, “Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration,” Microsystem Technologies, Vol. 13, No. 3, pp. 385-391, 2007.
[62] http://www.geo.mtu.edu/UPSeis/waves.html
[63] J. David N. Cheeke, Fundamentals and Applications of Ultrasonic Waves, Boca Raton, CRC Press, 2002.
[64] http://www.twi.co.uk/professional/protected/band_3/jk61.html
[65] C. J. Nonhof and G. A. Luiten, “Estimates for process conditions during the ultrasonic welding of thermoplastics,” Polymer Engineering and Science, Vol. 36, No. 9, pp. 1177-1183, 1996.
[66] A. Benatar and Z. Cheng, “Ultrasonic welding of thermoplastics in the far-field,” Polymer Engineering and Science, Vol. 29, no. 23, pp. 1699-1704, 1989.