研究生: |
蔡延佐 Tsai, Yan-Zuo |
---|---|
論文名稱: |
氮化鉻鋁矽/氮化鎢奈米多層硬質薄膜之抗磨耗行為、微觀結構與熱穩定性研究 Tribological Behavior, Microstructure Evolution and Thermal Stability of CrN/W2N and CrAlSiN/W2N Multilayer Hard Coatings |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 173 |
中文關鍵詞: | 磨耗 、濺鍍 、氮化物 、薄膜 、微結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面改質工程係在工具表面披覆上一層另類的材料,以達到提昇其機械性質、抗氧化、抗腐蝕與耐磨耗行為表現的新穎科技。近年來,由於氮化物硬質鍍膜具備了上述幾項優異的特性,已被廣泛使用在各種工業領域,諸如切削刀具保護層與手機、筆記型電腦等3C產品的裝飾鍍層等。本研究先選擇氮化鉻與氮化鎢兩種硬質鍍膜,藉由調變濺鍍擋板開關時間,製備出具不同層狀週期值之氮化鉻/氮化鎢奈米多層硬質薄膜。當層狀週期值控制在8奈米時,此一奈米多層薄膜的硬度可達到29.1 GPa,較原先二元氮化物薄膜有較優異的機械性質表現。由微結構觀察中可發現,氮化鉻/氮化鎢奈米多層膜較二元氮化鉻薄膜具有較緻密的結構,故在抗磨耗的研究中也具有較佳的表現。
然而,二元氮化鉻薄膜之微硬度僅有18GPa。為進一步提昇奈米多層膜之機械性質表現,本研究將鋁及矽兩種元素利用高溫熔煉的方式添加在鉻元素中,製備出鉻鋁矽三元合金濺鍍靶材,並利用此一合金靶材與金屬鎢靶材,以通入反應性氣體的方式製備出一新穎的氮化鉻鋁矽/氮化鎢奈米多層硬質薄膜。當層狀週期值調變到一適當值時,氮化鉻鋁矽/氮化鎢奈米多層薄膜之硬度最高可達到40 GPa,為一非常優異的高硬度表現。本研究並利用鍍製不同總厚度之多層膜與穿遂式電子顯微鏡微結構觀察探討奈米多層薄膜之成長機制。在經過800oC高溫48小時長時間真空熱處理後,氮化鉻鋁矽/氮化鎢多層薄膜仍舊維持其奈米層狀結構,並無層與層間交互擴散的現象發生,顯示出此一奈米多層膜具有相當傑出的熱穩定性表現。本研究並利用ball-on-disc與刮痕測試以探討具柱狀晶結構之氮化鉻鋁矽單層膜與具奈米層狀結構之氮化鉻鋁矽/氮化鎢多層薄膜兩者在受外在巨大壓力下變形後之薄膜破裂裂口成長機制。
1. R. Melley, P. Wissner, The real costs of lubrication, 99th AGM-CIM (1997), Canada.
2. K.G. Budinski, Surface engineering for wear resistance, 1988, Prentice Hall, New Jersey, USA
3. B. Bhushan, Principles and applications of tribology, 1999, John Wiley & Sons, New York, USA.
4. M. Bin-Sudin, A. Leyland, A. S. James, A. Matthews, J. Housden, B. Garside, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings,” Surf. Coat. Technol. 74-75, 897 (1995).
5. H. Ichimura and A. Kawana, “High temperature oxidation of
ion-plated CrN films,” J. Mater. Res. 9, 151 (1994).
6. J. N. Tu, J. G. Duh and S. Y. Tsai, “Morphology, mechanical properties, and oxidation behavior of reactively sputtered Cr–N films,” Surf. Coat. Technol. 133-134, 181 (2000).
7. W. D. Munz, “Titanium aluminum nitride films: a new alternative to TiN coatings” J. Vac. Sci. Technol. A 4(6), 2717 (1986).
8. S. Veprek, M. Haussmann, S. Reiprich, S. Z. Li and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials“, Surf. Coat. Technol. 86-87, 294 (1996).
9. S. Veprek, S. Reiprich and S. Z. Li, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system,” Appl. Phys. Lett., 66, 2640 (1995).
10. S. Veprek, “The search for novel, superhard materials,” J. Vac. Sci. Technol. A 17, 2401 (1999).
11. F. Regent and J. Musil, “Magnetron sputtered Cr-Ni-N and Ti-Mo-N films: comparison of mechanical properties”, Surf. Coat. Technol. 142-144, 146 (2001).
12. P. H. Mayrhofer, A. Horling, L. Karlsson, J. Sjolen, T. Larsson, C. Mitterer and L. Hultman, “Self-organized nanostructure in the TiAlN system”, Appl. Phys. Lett., 83(10), 2049 (2003).
13. J. B. Kim, B. S. Jun and S.M. Lee, “Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries,” Electrochimica Acta 50, 3390 (2005).
14. S. A. Barnett, and A. Madan, “Hardness and stability of metal–nitride nanoscale multilayers,” Scripta Matall. 50, 739 (2004).
15. F. D. Lai, “Composite thin films of (ZrO2)x-(Al2O3)1–x for high transmittance attenuated phase shifting mask in ArF optical lithography,” J. Vac. Sci. Technol. B 22, 1174 (2004).
16. P. F. Carcia, R. H. French, M. H. Reilly, M. F. Lemon, and D. J. Jones, “Optical superlattices—a strategy for designing phase-shift masks for photolithography at 248 and 193 nm: Application to AlN/CrN,” Appl. Phys. Lett. 70, 2371 (1997).
17. D. G. Kim, T. Y. Seong and Y. J. Baik, ”Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition” Surf. Coat. Technol. 153, 79 (2002).
18. H. Y. Lee, J. G. Han, S. H. Baeg and S. H. Yang, “Structure and properties of WC–CrAlN superlattice films by cathodic arc ion plating process,” Thin Solid Films 420-421, 414 (2002).
19. Y. Z. Tsai, and J. G. Duh, “Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition,” Surf. Coat. Technol. 200, 1683 (2006).
20. M. S. Wong, G. Y. Hsiao, and S. Y. Yang, “Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings,” Surf. Coat. Technol. 133–134, 160 (2000).
21. D. C. Cameron, R. Aimo, Z. H. Wang, and K. A. Pischow, “Structural variations in CrN/NbN superlattices,” Surf. Coat. Technol. 142–144, 567 (2001).
22. F. B. Wu, S. K. Tien, and J. G. Duh, “Manufacture, microstructure and mechanical properties of CrWN and CrN/WN nanolayered coatings,“ Surf. Coat. Technol. 200, 1514 (2005).
23. H. C. Barshilia, A. Jain and K. S. Rajam, “Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings,” Vacuum 72, 241 (2004).
24. H. C. Barshilia, M. S. Prakash, A. Jain and K. S. Rajam, “Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films,” Vacuum 77, 169 (2005).
25. P. C. Yashar, W. D. Sproul, “Nanometer scale multilayered hard coatings” Vacuum 55, 179 (1999).
26. H. Holleck and V. Schier, “Multilayer PVD Coatings for Wear Protection”, Surf. Coat. Technol., 76-77, 328 (1995)
27. B. Bhushan, “Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments.” Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, (1987), ASTM, Philadelphia, PA. USA.
28. Y. Chiba, T. Omura, and H. Ichimura, “Wear Resistance of Arc Ion-Plated Chromium Nitride Coatings”, J. Mater. Res., 8 (1993) 1109-1115
29. D. S. Rickerby and A. Matthews, “Advanced surface coatings : a handbook of surface engineering,” Glasgow, Blackie (1991).
30. R. Behrisch Ed., "Sputtering by particle bombardment," Applied Physics, 47, Berlin, Springer (1981).
31. P. D. Toensend, and J. C. Kelly, “Ion implantation: Sputtering and their applications,” Academic Press, (1976).
32. M. Ohring Ed., “The materials science of thin films,” Academic Press, London, UK, (1992) Chap.3 123-124.
33. H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol., A4, 2661 (1986).
34. C. Mendibide, J. Fontaine, P. Steyer and C. Esnouf, “Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings,” Tribology letters, Vol. 17, No. 4 (2004) 779.
35. H. Holleck, in: A. Kumar, Y.W. Chung, J.J. Moore, J.E. Smugeresky (Eds.), “Surface engineering: Science and technology I,” The Minerals, Metals and Materials Society, 207-231 (1999).
36. B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide,” Fizika Metall. (Phys. Metals Metallogr.) 28, 83 (1969).
37. J. A. Thornton, “High rate thick film growth,” Ann. Rev. Mater. Sci. 7, 239 (1977).
38. J. E. Greene, in “Multicomponent and Multilayered Films for Advanced Microtechnologies: Technuques, Fundamentals and Devices,” eds. O. Aucuello and J. Engemann. Kluwer, The Netherlands (1993).
39. P. Barna, M. Adamik, “Formation and characterization of the structure of surface coatings,” in: Y- Paleau, P.B. Barna Eds.., Protective Coatings and Thin Films, Kluwer Academic Publisher (1997).
40. P. B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998).
41. A. G. Dirks and H. J. Leamy, “Columnar structure in vapor-deposited thin films”, Thin Solid Films, 47, 219 (1977).
42. G. Knuyt, C. Quaeyhaegens, J. D’Haen and L. M. Stals, “A quantitative modelfor the evolution from random orientation to a unique texture in PVD thin film growth”, Thin Solid Films, 258, 159 (1995).
43. E. O. Hall, “The deformation and ageing of mild steel: III Discussion of results,” Proc. Phys. Soc. London, Sect. B64, 747 (1951).
44. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., London 174, 25 (1953).
45. A. Lasalmonie and J. L. Strudel, “Influence of grain size on the mechanical behavior of some high strength materials,” J. Mater. Sci. 21, 1837 (1986)
46. A. Kelly and N. H. MacMillan, “Strong Solids,” 3rd ed. Clarendon, Oxford, (1986).
47. J. Schiotz, “Simulations of nanocrystalline metals at the atomic scale, what can we do? What can we trust?,” Proceeding of the 22th Riso International Symposium on Materials Science, Roskilde, Denmark 127 (2001).
48. J. Schiotz, T. Vegge, F.D. Di Tolla, “Atomic-scale simulations of the mechanical deformation of nanocrystalline metals,“ Phys. Rev. B 60 (17), 11971 (1999).
49. E. Arzt, “Size effects in materials due to microstructural and dimensional constraints: a comparative review,” Acta Mater. 46, 5611 (1998).
50. E. M. Lehockey, G. Palumbo, K. T. Aust, U. Erb, and P. Lin, “On the role of intercrystalline defects in polycrystal plasticity - Atomic Level Structure and Properties,” Scripta Matall. 39, 341 (1998).
51. S. Yip, “Nanocrystals: The strongest size,” Nature, (London), 391, 532 (1998).
52. J. Patscheider, T. Zehnder, J. Matthey and M. Diserens in A. A. Voevodin, D. V. Shtansky, E. A. Levashov, and J. J. Moore (Eds), Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Kluwer Academic Pubishers, pp.35-42 (2004).
53. E. Bemporad, C. Pecchio, S. De Rossi and F. Carassiti, “Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating,” Surf. Coat. Technol. 188-189, 319 (2004).
54. B.G. Wendler, M. Molinaro, Proc. 10th Int. Summer School on Modern Plasma Surface Technology, May 10–14, Mielno, Poland, 423–436 (1998).
55. E. Martinez, J. Romero, A. Lousa, and J. Esteve, “Wear behavior of nanometric CrN/Cr multilayers”, Surf. Coat. Technol., 163-164, 571 (2003).
56. L. Wei, F. H. Mei, N. Shao, M. Kong, G. Y. Li and J. G. Li,“Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, “ Appl. Phys. Lett. 86, 021919 (2005).
57. F. H. Mei, N. Shao, L. Wei, Y. S. Dong, and G. Y. Li, “Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayers, “Appl. Phys. Lett. 87, 011906 (2005).
58. A. Madan, X. Chu and S. A. Barnett, “Growth and characterization of epitaxial Mo/NbN superlattices,” Appl. Phys. Lett. 68 (1996) 2198.
59. K. K. Shih, D. B. Dove, “Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness,” Appl. Phys. Lett. 61 (6) (1992) 654.
60. L. Hultman, C. Engstrom and M. Oden, “Mechanical and thermal stability of TiN/NbN superlattice thin films,” Surf. Coat. Technol. 133-134 (2000) 227.
61. R. C. Cammarata, “The supermodulus effect in compositionally modulated thin films,” Scripta Matall. 20, 479 (1986).
62. J. S. Koehler, “Attempt to design a strong solid,“ Phys. Rev. B 2, 547 (1970)
63. S. L. Lehoczky, J. Appl. Phys. 49, 5479 (1978).
64. S. L. Lehoczky, “Retardation of dislocation generation and motion in thin-layered metal laminates,“ Phys. Rev. Lett. 41, 1814 (1978).
65. H. Soderberg, M. Oden and L. Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering,” J. Appl. Phys. 97, 114327(2005).
66. M. Kato, T. Mori, L. H. Schwartz, “Hardening by Spinodal Modulated Structure,“ Acta Metall. 28, 285 (1980).
67. P. B. Mirkarimi, L. Hultman, S. A. Barnett, “Enhanced Hardness in Lattice- matched Single-Crystal TiN/(V0.6Nb0.4)N superlattices,” Appl. Phys. Lett. 57 (1990) 2654.
68. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, “Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness,” J. Appl. Phys. 62 (1987) 481.
69. M. Shinn, L. Hultman, S. A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices,” J. Mater. Res. 7 (1992) 901.
70. I. W. Kim, Q. Li, L. D. Marks, S. A. Barnett, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices,” Appl. Phys. Lett. 78 (2001) 892.
71. A. Madan, I. W. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, S. A. Barnett, ”Stabilization of cubic AlN in epitaxial AlN/TiN superlattices,” Phys. Rev. Lett. 78 (1997) 1743.
72. Y. Y. Wang, M. S. Wong, W. J. Chia, J. Rechner, W. D. Sproul, “Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings,” J. Vac. Sci. Technol. A 16 (1998) 3341.
73. D. G. Kim, T. Y. Seong, Y. J. Baik, “Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition,” Surf. Coat. Technol. 153 (2002) 79.
74. D. Li, X. Chu, S. C. Cheng, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul, “Synthesis of superhard carbon nitride composite coatings,” Appl. Phys. Lett. 67 (1995) 203.
75. D. Li, X. W. Lin, S. C. Cheng, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul, “Structure and hardness studies of CNx/TiN nanocomposite coatings,” Appl. Phys. Lett. 68 (1996) 1211.
76. M. L. Wu, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul, “Preparation and characterization of superhard CNx/ZrN multilayers,” J. Vac. Sci. Technol. A 15 (1997) 946.
77. M. L. Wu, W. D. Qian, Y. W. Chung, Y. Y. Wang, M. S. Wong, W. D. Sproul, “Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering,” Thin Solid Films 308-309 (1997) 113.
78. H. L. Bai, Z. J. He, W. B. Mi, P. Wu, Z. Q. Li, E.Y. Jiang, “Dual facing target sputtered amorphous CoMoN/CN compound soft X-ray multilayer: structures and thermal stability,” Appl. Phys. A 77, 533 (2003).
79. H. L. Bai, E. Y. Jiang, P. Wu, Z. D. Lou, Y. Wang, C. D. Wang, “Characterization of heat-treated CN films fabricated by dual-facing-target sputtering for soft X-ray multilayer mirrors,“ Appl. Phys. A 69, 641 (1999)
80. H. Ichimura and A. Kawana, “High temperature oxidation of ion-plated TiN and TiAlN films,” J. Mater. Res., 8, 1093 (1996).
81. I. Miloev, H. H. Strehbtow, B. Navinek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Surf. Coat. Technol. 74-75 (1995) 897.
82. R. Wuhrer, and W. Y. Yeung, “A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminum nitride coatings”, Scripta Matall. 50, 1461 (2004).
83. K. T. Liu, J. G. Duh, K. H. Chung, J. H. Wang “Mechanical Characteristics and Corrosion Behavior of (Ti,Al)N Coatngs on Dental Alloys,” Surf. Coat. Technol., 200, 2100 (2005).
84. Y. Makino, “Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method”, Surf. Coat. Technol. 193, 185 (2005).
85. D. Mclntyre, J. E. Greene, G. Hakansson, J. E. Sundgren and W. D. Munz, ”Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films:Kinetics and mechanisms,” J. Appl. Phys. 57(3), 1542 (1990).
86. A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann, and B. Sartory, “Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation,“ Surf. Coat. Technol. 200, 2114 (2005).
87. W. Kalss, A. Reiter, V. Derflinger, C. Gey, J. L. Endrino, “Modern coatings in high performance cutting applications,” International Journal. of Refractory Metals & Hard Materials 24, 399(2006)
88. H. Willmann, P. H. Mayrhofer, P.O.A. Persson, A. E. Reiter, L. Hultman and C. Mitterer, ”Thermal stability of Al-Cr-N hard coatings,” Scripta Matall. 54, 1847 (2006).
89. A. Leyland, A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour,” Wear 1-11 (2000) 246.
90. L. Hultman, “Thermal stability of nitride thin films,” Vacuum, 57, 1 (2000).
91. C. Engstrom, J. Birch, L. Hultman, C. Lavoie, C. Cabral, J. J. Sweet, “Interdiffusion studies of single crystal TiN/NbN superlattice thin films,” J. Vac. Sci. Technol. A 17, 2920 (1999).
92. M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, “Formation of cubic-A1N in TiN/A1N superlattice,” Surf. Coat. Technol. 86-87, 225 (1996).
93. C.M. Cheng, Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile,” Appl. Phys. Lett. 71, 2623 (1997).
94. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data,” J. Mater. Res. 16, 3202 (2001).
95. M.C. Oliver, G.M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res. 7, 1564 (1992).
96. J. M. Bennett and L. Mattsson, “Introduction to Surface Roughness and Scattering,” Optical Society of America, Washington, D. C., (1989) Chap. 4, pp. 39.
97. T. R. Thomas, “Rough Surfaces,” 2nd Edition, Imperial College Press, London, (1999) Chap. 2, pp. 21.
98. Instruction Manual, Electron Diffraction Tube-Welch Scientific Co. Cat. No.2639.
99. D. B. Williams, and C. Barry Carter, “Transmission Electron Microscopy,” Plenim Press, New York, 1996.
100. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis,” 2nd ed. Plenum Press, New York, USA (1992).
101. G.G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proc. R. Soc. London, Ser. A 82, 172 (1909)
102. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans, Electron Devices, ED-23, 531-553 (1976).
103. G.Y. Li, Z.H. Han, J.W. Tian, J.H. Xu and M.Y. Gu, “Alternating stress field and superhardness effect in TiN/NbN superlattice films,” J. Vac. Sci. Technol. A20 (2002) 674.
104. G. Abadias, Y.Y. Tse, A. Michael, C. Jaouen and M. Jaouen, “Nanoscaled composite TiN/Cu multilayer thin films deposited by dual ion beam sputtering: growth and structural characterization,” Thin Solid Films, 433 (2003) 166.
105. E.E. Fullerton, I.K. Schuller, H. Vanderstraeten and Y. Bruynseraede, “Structural refinement of superlattices from X-ray diffraction,” Phys. Rev. B 45, 9292 (1992).
106. X. Chu, S.A. Barnett, “Model of superlattice yield stress and hardness enhancements,” J. Appl. Phys. 77, 4403 (1995).
107. I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21(5) (2003) S117.
108. Y.G. Shen, Y.W. Mai, W.E. McBride, Q.C. Zhang, D.R. McKenzie, “Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films,” Thin Solid Films, 372 (2000) 257.
109. T. Fu, Y.G. Shen, Z.F. Zhou and K.Y. Li, “Thermal stability of sputter deposited nanocrystalline W2N/amorphous Si3N4 coatings,” J. Vac. Sci. Technol. A 24(6) (2006) 2094.