簡易檢索 / 詳目顯示

研究生: 張庭嘉
Zhang, Ting-Jia
論文名稱: 從反物質磁譜儀二號的正子分數數據 給出惰性希格斯二重態模型的限制
Constraints on the Inert Higgs Doublet Model from AMS-02 Positron Fraction Data
指導教授: 張敬民
Cheung, Kingman
口試委員: 耿朝強
GENG, CHAOQIANG
徐百嫻
HSU, PAI-HSIEN
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 19
中文關鍵詞: 暗物質反物質磁譜儀二號惰性希格斯二重態模型正子分數
外文關鍵詞: Inert Higgs Doublet Model, AMS-02, Dark Matter, Positron Fraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反物質磁譜儀二號觀測到過量的正子分數。我們假設這個現象是來自於暗物質湮滅,而且嘗試用惰性希格斯二重態模型來解釋這個現象。我們用MicrOMEGAs 程式來計算正子與電子的流量,使用 χ 2 來判斷是否符合實驗。我們掃描了 Z 2 反對稱粒子的質量為 500 GeV 到 12000 GeV。我們沒有得到任何點可以滿足 95% 的信賴水準,我們最小的 χ 2 是 75.9。總得來說,當 Z 2 反對稱粒子的質量小於12000 GeV 時,來自惰性希格斯二重態模型的暗物質不適合
    用來解釋反物質磁譜儀二號觀測到的正子分數數據。


    We assume the excess e+/(e+ +e−) in AMS-02 data comes from annihilations of dark matter and try to interpret the data by Inert Higgs Doublet Model. We calculate the e ± flux with MicrOMEGAs code and use χ 2 to describe the goodness of fitting. We scan the parameter space : the masses of the Z 2 symmetry odd particles are
    between 500 GeV and 12000 GeV. However, we don’t have any points can reach 95% CL and the minimal χ 2 which we get is 7.59×10 1 . In summary, the inert Higgs Doublet Model parameter space is disfavored by AMS-02 e+/(e+ +e−) data when the masses of the Z 2 symmetry odd particles are smaller than 12000 GeV.

    Contents ...........................................................1 1 Introduction .....................................................2 2 Model ............................................................4 2.1 Inert Higgs Doublet Model . . . . . . . . . . . . . . . . . . . 4 2.2 Distribution of Dark Matter . . . . . . . . . . . . . . . . . . 6 2.3 Propagation of positrons . . . . . . . . . . . . . . . . . . . .7 2.4 AMS-02 Positron Data . . . . . . . . . . . . . . . . . . . . . .9 3 Data Analysis ....................................................11 4 Conclusion .......................................................16 Reference ..........................................................18

    [1] Graciela B. Gelmini, (2015), arXiv:1502.01320[hep-ph]
    [2] L. Accardo et al., AMS Collaboration. Phys. Rev. Lett. 113, 121101 (2014).
    [3] Gianfranco Bertone and Dan Hooper and Joseph Silk, (2004). arXiv:hep-ph/
    0404175
    [4] Abdesslam Arhrib and Yue-Lin Sming Tsai and Qiang Yuan and Tzu-Chiang
    Yuan, (2013), arXiv:1310.0358[hep-ph]
    [5] A. Goudelis and B. Herrmann and O. Stål, (2013), arXiv:1303.3010 [hep-ph]
    [6] Agnieszka Ilnicka and Maria Krawczyk and Tania Robens, (2015), arXiv:
    1508.01671 [hep-ph]
    [7] Marco Aurelio Díaz, Benjamin Koch, Sebastián Urrutia-Quiroga, (2015),
    arXiv:1511.04429 [hep-ph]
    [8] Stefano Profumo, (2013), arXiv:1301.0952 [hep-ph]
    [9] G. Belanger, F. Boudjema, A. Pukhov, (2014), arXiv:1402.0787 [hep-ph]
    [10] Mariangela Lisanti, (2016), arXiv:1603.03797 [hep-ph]
    [11] Kunz, Simon M., (2014), Constraints on Transport Models for Galactic Cos-
    mic Rays and their Implications for the Anomalous Positron Abundance
    [12] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, https://
    lapth.cnrs.fr/micromegas/ .
    [13] M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 113, 121102 (2014).
    18[14] Yu-Heng Chen and Kingman Cheung and Po-Yan Tseng, (2015), arXiv:
    1505.00134 [hep-ph]
    [15] Laura Lopez Honorez, Emmanuel Nezri, Josep F. Oliver, Michel H.G. Tytgat,
    (2006), arXiv:hep-ph/0612275v2
    [16] Vassilis C. Spanos, (2013), arXiv:1312.7841v1 [hep-ph]

    QR CODE