研究生: |
曹騰躍 Tsao, Teng-Yueh |
---|---|
論文名稱: |
新型複合式靜電吸附鋪層方法應用於金屬粉末積層製造 Novel Electrostatic Deposition Method in the Layer Forming Process of Metal-powder-based Additive Manufacturing |
指導教授: |
張禎元
Chang, Jen-Yuan |
口試委員: |
宋震國
Sung, Cheng-Kuo 曹哲之 Tsao, Che-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 靜電吸附 、粉末鋪層 、金屬粉末積層製造 |
外文關鍵詞: | Electrostatic deposition process, Layer forming process, Metal-powder additive manufacturing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著3D列印各類技術的專利陸續到期,積層製造正式進入了快速發展期,「塑料擠料成型」及「樹脂光固化成形」技術競爭激烈,而金屬積層製造由於其技術門檻較高,研究經費較龐大,還在研究後期到發展初期之間,但由於其在國防及航太工業的潛力,各國近年來皆視金屬積層製造為重點開發項目。
本研究針對靜電吸附可以大範圍鋪層及金屬材導電的特性,提出利用「靜電吸附」的成型方式來實現金屬粉末鋪層階段,並研究其製程流程,此製程的特色在於「間接鋪層」的特性,使其不需受限於現有「粉床熔化成型」技術因粉床大小的幾何大小限制及須從零開始積層的缺點,適合搭配台灣的工具機產業轉型進化成混合加工機以達到工具機價值提升或做曲面修補用途。
為了驗證此製程的可行性,對於鋪層的鋪層厚度的可控制性及表面粗糙度是判定標準之一,在本論文的前半部,針對介電油層塗佈流程做噴塗試驗,以求達到介電油均勻的鋪層。在論文的後半部,針對靜電吸附的厚度控制,本研究提出了「靜電吸附模型」來預測鋪層粉末層厚,並透過實驗驗證模型的正確性,並針對鋪層之實驗參數分析可發現靜電場的分布大小、幾何關係皆會影響到鋪層的速度。
此篇論文提出「靜電吸附」於金屬粉末積層製造的鋪層方法的解決方法,此製程的特色為「面成形」及「間接鋪層」,並針對製造流程的特性探討及實驗參數分析,在噴塗實驗針對所使用的介電油做噴塗成型分析,在靜電吸附實驗則針對鋪層的厚度提出模型並驗證,另外針對靜電設備的參數做鋪層的探討。
Due to many basic expired patents of 3D printing technology, the product of 3D printer had entered a high-growth period. There is lots of competition in 3D printers with 3D printer technology of “fused deposition modeling” (FDM) and “stereolithography” (SLA). Although the technical threshold of metal additive manufacturing and the development funds is relatively high compared to other 3D printer technology, many countries have regarded metal additive manufacturing as an important development project due to its potential in the area of the defense industry and aerospace industry.
“Electrostatic deposition method” has the characteristic of forming large-area layers in a short time. We studied the process of using the electrostatic deposition method in the metal-powder additive manufacturing technology in this research. The method we used in the research has the feature of forming the layer through the air without direct contact, making it easy to combine with subtraction processing and the potential in the area of surface repairing. The concept of combining additive and subtractive manufacturing is called hybrid manufacturing. CNC industry in Taiwan can add the function of additive manufacturing into their traditional machine tool to enhance their product value.
To verify the feasibility of the method, we should study about the controllability of the layer thickness, coverage rate and the surface roughness of the layer. In the first half of the paper, we studied about the spraying method for even coverage of the dielectric film. In the second half of the paper, we modeled the electrostatic deposition process to predict the deposition thickness of the powder layer, then we verify the created model with experiment and analyze the experimental parameter. According to the results of the experiment, the applied electric field and the geometry of the experiment setup would influence the powder forming rate.
We investigated the topic of applying electrostatic deposition method in the powder-based-additive-manufacturing with the feature of forming powder layer in a large area and deposition without direct contact. We did the experiments of the process and studied about the parameter and the results of deposition condition.
1. 金屬粉體材料在3D列印技術之發展與應用. 賴宏仁、曹申. 2014年, 工業材料雜誌335期.
2. Fuda Ning a, Weilong Cong, Jingjing Qiu, Junhua Wei, Shiren Wang. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites. 2015年, 頁 369.
3. Pwnagic. wikimedia commons. 2013年. https://commons.wikimedia.org/wiki/File:Stereolithography_apparatus_vector.svg.
4. AZoM. AZO materials. 2002年9月13日. http://www.azom.com/article.aspx?ArticleID=1648.
5. SidambeT.Alfred. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials 2014. 2017年7月.
6. Ab. Aziz Shuaib,Olalere Folasayo Enoch. Rapid Prototyping: An Explorative Study on Its Viability in Pottery. University Kebangsaan Malaysia (UKM), 2013.
7. StandardTerminology for Additive Manufacturing Technologies(F2792) ASTM International.
8. 西門子3D列印的渦輪葉片已通過速度和溫度的測試. 重慶3D虎. 2017年, 科技.
9. 葉圳轍. 台灣首座 3D列印鑄造砂模機台建置.工商時報, 2016年.
10. 財團法人金屬工業研究發展中心. 3D列印鑄造砂模營運中心. 2016年.
11. 南極熊3d打印網. 光固化陶瓷3D列印,牙齒可以應用了?.
12. 中国智能制造网. FDM等专利到期 如何开创3D打印技术下一代? 2016年5月22日.
13. 2015年全球工業級3D列印市場下降9%. TW-XYZPrinting. 2016年4月7日, CONTEXT.
14. 科技部工程司. 積層製造(數位製造)產業應用研究專案計畫. 2017年.
15. 台灣東台精機混合3D列印技術 今年有望實現商業化. 2017年, 3D列印世界.
16. FROES F.H. 1* and DUTTA B. 2,ba. The Additive Manufacturing (AM) of Titanium Alloys. Advanced Materials Research . 2014年7月4日.
17. DuttaBhaskar. Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities. 2016.
18. Z. ZhuDhokia , A. Nassehi , S.T. NewmanV.G. A review of hybrid manufacturing processes-state of the art and future perspectives. International Journal of Computer Integrated Manufacturing. 2013年.
19. PalermoElizabeth. What is Selective Laser Sintering? 2013年.
20. emaze. https://www.emaze.com/@AWZLTWZO/3D-Printing.
21. CiraudAlfred LeonPierre. Method and device for making any belongings from any fusible material. DE2263777 A1 德國, 1973年7月5日.
22. 楊來俠. 靜電吸附式快速成型機. CN2555148 中國, 2002年5月10日.
23. Norman PaascheBrabant, Stefan StreitThomas. Layer application device for an electrostatic layer application of a building material in powder form and device and method for manufacturing a three-dimensional object . US8124192 B2 US, 2012年.
24. 黃啟華. 快速原型機之氣霧噴印製程設計. 2007.
25. KBanerjee and M. MalayS. Adhesion of Charged Powders to a Metal Surface in the Powder Coating Process. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 1996年.
26. Y. YanLi, R. Zhang, F. Lin , R. Wu, Q. Lu, Z. Xiong and X. WangS. Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends. TSINGHUA SCIENCE AND TECHNOLOGY. 2009年.
27. S. LijunGuangcheng, X. Hui, X. Xianfeng and L. SimengZ. Repair of 304 stainless steel by laser cladding with 316L stainless steel. Journal of Manufacturing Processes . 2016年, 頁 116.
28. Z. ZV.G, N. A and N. S.TD. A review of hybrid manufacturing processes – state of the art and future perspectives. International Journal of Computer Integrated Manufacturing. 2013年.
29. 金屬3D列印技術:金屬積層製造的化妝師–3D列印後的處理加工. 523, 2016年, 科學發展, 頁 23-33.
30. 衛蒲實業. 自動空氣噴槍. 衛蒲實業 http://www.waipu.com.tw/exec/product.php?mod=show&cid=6&pid=WS-03&lg=T.
31. wiki. Diaphragm pump.
32. 全華精密. 濕膜塗佈測試/濕膜輪膜厚計. 全華精密http://www.chuanhua.com.tw/pro_detail.asp?ProSn=1508030792.
33. MeyerE. The electrostatics of powder coatings-Still a mystery? Washington.
34. HughesJ. Electrostatic Powder Coating, New York: Wiley . 1984.
35. Breakdown Voltages in Very Small Gap Discharges. ShinobuJunji, O.,TakashiI.,. 1999. Zurich.
36. K. ShinShigeru, K. Tatsuya, I. Ryo, N. Shungo and N. HiroshiU. Effect of Powder–Liquid Interaction on Their Accumulation Behavior in Packed Bed. ISIJ International. 2014年.
37. GmbHEOS. EOS MaragingSteel MS1-Material data sheet. : EOS GmbH, 2011年.
38. 矽油SILICONE OIL、矽油膏、矽油脂簡介.http://www.jem.url.tw/tahw/%E7%9F%BD%E6%B2%B9-silicone-oil.
39. 科斯密國際有限公司. 科斯密國際有限公司http://www.cosmi.com.tw/s/1/product-381730/SC-PME50-%E9%9D%9C%E9%9B%BB%E7%94%A2%E7%94%9F%E6%A9%9F.html.
40. al.Strano etGiovanni. Surface roughness analysis, modeling and prediction in selective laser melting. Journal of Materials Processing Technology 213. 2013年.
41. 噴漆機器人空氣噴槍的新模型. 張永貴黃玉美,高峰,王偉. 2006年, 機械工程學報.
42. Minor moves-global results: robot trajectory planning. HyotyniemiH. Herndon, VA, USA, USA : 1990. Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.
43. Optimal trajectory planning for spray coating. AntonioJ.K. San Diego, CA, USA : 1994. Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
44. Automated robot trajectory planning for spray painting of free-form surfaces in automotive manufacturing. Heping ChenSheng,Ning XiWeihua. Washington, DC, USA : 2002. Proceedings 2002 IEEE International Conference on Robotics and Automation.
45. M. A. Sahir ArıkanBalkanTuna. Process Modeling,Simulation, and PaintThickness Measurement forRobotic Spray Painting. Journal of Robotic Systems. 2000年.