簡易檢索 / 詳目顯示

研究生: 朱培慈
Chu, Pei-Tzu
論文名稱: X 光廣角入射矽奈米線之表面繞射研究
X-Ray Surface Diffraction Studies of Nanometer Silicon Wires
指導教授: 張石麟
Chang, Shih-Lin
口試委員: 蘇雲良
湯茂竹
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 51
中文關鍵詞: 動力繞射理論矽奈米線表面繞射
外文關鍵詞: Nanometer Silicon Wires
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為以光子能量8.8785keV之X 光廣角入射矽奈米線,利用特定原子面(1 1 3)產生表面繞射光,使其沿著矽奈米線方向行走。改變能量、樣品角度φ、矽奈米線寬度等,觀察繞射光於矽奈米線之傳遞及繞射。實驗樣品設計為以晶向[0 0 1]矽單晶為基底,向下蝕刻出數根高度約為3μm,長度約為5mm,寬度450nm 至20μm 的直線形矽奈米線。

    本論文的主要結果有兩部份。首先,在出射光2θ-scan 中可得4 個峰值,分別為純矽(1 1 3)表面繞射光、純矽(1 1 3)表面繞射光的鏡面反射光、矽奈米線結構造成的繞射光、矽奈米線結構造成的鏡面反射光。隨著旋轉樣品φ的角度增大,由於矽奈米線結構造成的繞射光入射矽奈米線表面角度變小,會與其鏡面反射光峰值會逐漸靠近,重合成一個峰值。φ的角度增大至20°時,只剩下純矽(1 1 3)表面繞射光與鏡面反射光。此外,實驗上改變入射光能量與改變樣品φ的角度可以找到互相對應的結果。第二部分則是在出射光β-scan中,可得3 個峰值,分別為因空間幾何產生的純矽(1 1 3)表面繞射光、由於純矽(1 1 3)繞射光打到矽奈米線側壁的反射光,以及目前原因不明之峰值。隨著φ的角度增大,純矽(1 1 3)表面繞射光有0.57之關係,矽奈米線側壁的反射光相較純矽(1 1 3)表面繞射光偏轉角度0.86。


    This work aims to allow wide-angle X-rays to incident into nanometer silicon wires at the photon energy 8.8785keV. Nanometer silicon wires were prepared on a [0 0 1] silicon wafer with 3μm high, 5mm long along [1 1 0] direction, 450nm to 20μm wide.

    The major results of the diffraction experiments may be summarized as follows. First, we can get four peaks in vertical 2θ -scan, which are Si (1 1 3), specular reflection of Si (1 1 3), the peak due to nano-wire and its specular reflection. And the peak due to nano-wire and its specular reflection get closer and merge together when the rotation angle of sample φ increases. Only Si (1 1 3) and specular reflection of Si (1 1 3) left whenφ increase to 20°. Second, the results of different enery and φ can achieve the same effect.

    Finally, there are three peaks in horizontal β -scan which are Si (1 1 3), Si(1 1 3) reflected by nano-wire, and the unexplained peak. As increasing φ , Si(1 1 3) wanders off into the relation 0.57, and the angle between Si (1 1 3) and its reflection of nano-wire has the following relationship 0.86.

    摘要 ........................................................... I Abstract ........................................................II 目 錄 ...........................................................IV 第一章 緒 論 ....................................................1 第二章 原 理 ....................................................2 2.1 布拉格繞射定律 ...........................................2 2.2 艾瓦建構 .................................................3 2.3 動力繞射理論..............................................5 2.3.1 基本波場方程式..........................................5 2.3.2 直角坐標系下的基本波場方程式 ...........................8 第三章 X光廣角入射矽奈米線實驗..................................14 3.1 矽奈米線設計.............................................14 3.2 矽奈米線製備.............................................16 3.3 實驗儀器 ................................................18 3.4 實驗步驟 ................................................20 第四章 實驗數據與分析 ..........................................24 4.1 實驗數據 ................................................24 4.1.1 偵測器垂直方向2θ-scan.................................24 4.1.2 改變樣品φ角度 ........................................26 4.1.3 改變矽奈米線線寬 ......................................28 4.1.4 改變入射光能量 ........................................29 4.2 偵測器水平方向β-scan ...................................35 4.2.1 改變樣品φ角度 ........................................35 4.2.2 改變入射點位置 ........................................37 4.2.3 改變矽奈米線線寬 ......................................38 4.3 理論分析 ................................................41 4.3.1 旋轉樣品φ與純矽(1 1 3)繞射光水平方向偏轉角度之關係....41 4.3.2 旋轉樣品φ與β-scan左側峰值偏轉角度之關係 .............44 4.3.3 純矽(1 1 3)繞射光與矽奈米線側壁反射光之相對關係 .......46 第五章 結 論 ...................................................49 參考文獻 ........................................................51

    [1] L.V. Azaroff, “Elements of X-Ray Crystallography,” New York: McGRAW-Hill.
    [2] A. Jarre, J. Seeger, C. Ollinger and C. Fuhse, “X-ray waveguide nanostructures: Design, fabrication, and characterization,” J. Appl. phys. 101,054306(6 P.) , 2007.
    [3] 方雍時, “矽奈米線水平X光光學效應之研究,” 國立清華大學碩士論文, July. 2010.
    [4] 林家正, “矽奈米線之X光非對稱表面繞射研究,” 國立清華大學碩士論文, July. 2010.
    [5] 黃志仁, “X光廣角入射波導管之波導干涉,” 國立清華大學碩士論文, July.2009.
    [6] N. W. Ashcroft, N. D. Mermin, “Solid State Physics,” Cornell University: Brooks/Cole, P96~P101, 1976.
    [7] S. L. Chang, “X-Ray Multiple-Wave Diffraction Theory and Application,” Berlin :Springer Verlag, Feb. 2004.
    [8] 張石麟, “X光繞射特論講義,” 國立清華大學物理學系, 2008.
    [9] 邱茂森, “X光共振腔之24光動力繞射計算,” 國立清華大學博士論文, July. 2008.
    [10] 黃亮諭, “藍寶石X光共振腔之可行性研究,” 國立清華大學碩士論文, 2009.
    [11] Y. P. Stetsko and S. L. Chang, “An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations,” Acta Cryst, A. 53, 28-34, 1997.
    [12] A. Souvorov, T. Ishikawa, A. Y. Nikulin, Y. P. Stetsko, S. L. Chang and P. Zaumseil, “X-ray multiple diffraction from crystalline multilayers: Application to a 90° Bragg reflection,” Phys. Rev., B70, 224109, 2004.
    [13] M. P. Marder, “Condensed Matter Physics,” The University of Texas at Austin: Wiley-Interscience, 2000.
    [14] Hong Xiao, “半導體製程技術導論,” 台灣培生教育出版股份有限公司, 2002.
    [15] H. Y. Chen, “Reflectivity.”
    [16] A. Authier, “Dynamical theory of X-ray Diffraction,” Oxford University Press , 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE