研究生: |
朱培慈 Chu, Pei-Tzu |
---|---|
論文名稱: |
X 光廣角入射矽奈米線之表面繞射研究 X-Ray Surface Diffraction Studies of Nanometer Silicon Wires |
指導教授: |
張石麟
Chang, Shih-Lin |
口試委員: |
蘇雲良
湯茂竹 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 動力繞射理論 、矽奈米線 、表面繞射 |
外文關鍵詞: | Nanometer Silicon Wires |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的為以光子能量8.8785keV之X 光廣角入射矽奈米線,利用特定原子面(1 1 3)產生表面繞射光,使其沿著矽奈米線方向行走。改變能量、樣品角度φ、矽奈米線寬度等,觀察繞射光於矽奈米線之傳遞及繞射。實驗樣品設計為以晶向[0 0 1]矽單晶為基底,向下蝕刻出數根高度約為3μm,長度約為5mm,寬度450nm 至20μm 的直線形矽奈米線。
本論文的主要結果有兩部份。首先,在出射光2θ-scan 中可得4 個峰值,分別為純矽(1 1 3)表面繞射光、純矽(1 1 3)表面繞射光的鏡面反射光、矽奈米線結構造成的繞射光、矽奈米線結構造成的鏡面反射光。隨著旋轉樣品φ的角度增大,由於矽奈米線結構造成的繞射光入射矽奈米線表面角度變小,會與其鏡面反射光峰值會逐漸靠近,重合成一個峰值。φ的角度增大至20°時,只剩下純矽(1 1 3)表面繞射光與鏡面反射光。此外,實驗上改變入射光能量與改變樣品φ的角度可以找到互相對應的結果。第二部分則是在出射光β-scan中,可得3 個峰值,分別為因空間幾何產生的純矽(1 1 3)表面繞射光、由於純矽(1 1 3)繞射光打到矽奈米線側壁的反射光,以及目前原因不明之峰值。隨著φ的角度增大,純矽(1 1 3)表面繞射光有0.57之關係,矽奈米線側壁的反射光相較純矽(1 1 3)表面繞射光偏轉角度0.86。
This work aims to allow wide-angle X-rays to incident into nanometer silicon wires at the photon energy 8.8785keV. Nanometer silicon wires were prepared on a [0 0 1] silicon wafer with 3μm high, 5mm long along [1 1 0] direction, 450nm to 20μm wide.
The major results of the diffraction experiments may be summarized as follows. First, we can get four peaks in vertical 2θ -scan, which are Si (1 1 3), specular reflection of Si (1 1 3), the peak due to nano-wire and its specular reflection. And the peak due to nano-wire and its specular reflection get closer and merge together when the rotation angle of sample φ increases. Only Si (1 1 3) and specular reflection of Si (1 1 3) left whenφ increase to 20°. Second, the results of different enery and φ can achieve the same effect.
Finally, there are three peaks in horizontal β -scan which are Si (1 1 3), Si(1 1 3) reflected by nano-wire, and the unexplained peak. As increasing φ , Si(1 1 3) wanders off into the relation 0.57, and the angle between Si (1 1 3) and its reflection of nano-wire has the following relationship 0.86.
[1] L.V. Azaroff, “Elements of X-Ray Crystallography,” New York: McGRAW-Hill.
[2] A. Jarre, J. Seeger, C. Ollinger and C. Fuhse, “X-ray waveguide nanostructures: Design, fabrication, and characterization,” J. Appl. phys. 101,054306(6 P.) , 2007.
[3] 方雍時, “矽奈米線水平X光光學效應之研究,” 國立清華大學碩士論文, July. 2010.
[4] 林家正, “矽奈米線之X光非對稱表面繞射研究,” 國立清華大學碩士論文, July. 2010.
[5] 黃志仁, “X光廣角入射波導管之波導干涉,” 國立清華大學碩士論文, July.2009.
[6] N. W. Ashcroft, N. D. Mermin, “Solid State Physics,” Cornell University: Brooks/Cole, P96~P101, 1976.
[7] S. L. Chang, “X-Ray Multiple-Wave Diffraction Theory and Application,” Berlin :Springer Verlag, Feb. 2004.
[8] 張石麟, “X光繞射特論講義,” 國立清華大學物理學系, 2008.
[9] 邱茂森, “X光共振腔之24光動力繞射計算,” 國立清華大學博士論文, July. 2008.
[10] 黃亮諭, “藍寶石X光共振腔之可行性研究,” 國立清華大學碩士論文, 2009.
[11] Y. P. Stetsko and S. L. Chang, “An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations,” Acta Cryst, A. 53, 28-34, 1997.
[12] A. Souvorov, T. Ishikawa, A. Y. Nikulin, Y. P. Stetsko, S. L. Chang and P. Zaumseil, “X-ray multiple diffraction from crystalline multilayers: Application to a 90° Bragg reflection,” Phys. Rev., B70, 224109, 2004.
[13] M. P. Marder, “Condensed Matter Physics,” The University of Texas at Austin: Wiley-Interscience, 2000.
[14] Hong Xiao, “半導體製程技術導論,” 台灣培生教育出版股份有限公司, 2002.
[15] H. Y. Chen, “Reflectivity.”
[16] A. Authier, “Dynamical theory of X-ray Diffraction,” Oxford University Press , 2001.