簡易檢索 / 詳目顯示

研究生: 蕭名廷
Hsiao,Ming-Ting
論文名稱: 可濕式製作深紅色磷光有機發光二極體
Wet-Process Feasible Deep-Red Phosphorescent OLED
指導教授: 周卓煇
Jou,Jwo-Huei
口試委員: 岑尚仁
Chen,Sun-Zen
薛景中
Shyue,Jing-Jong
陳建添
Chen,Chien-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 深紅光磷光共主體有機發光二極體
外文關鍵詞: deer-red, phosphorescent, co-host, OLED
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深紅光可應於用高品質、廣色域顯示器,同時,也可應用於生理友善之低色溫照明光源;若要利用連續滾印(roll-to-roll)方式製作低成本大面積元件,勢必要一具有可濕製作特性的發光染料。本研究中,利用喹喔啉/二苯基笏雙重鄰位混成之環金屬配位體spirofluorene-dibenzosuberene[d]quinoxaline所合成出之磷光染料[bis-(spirofluorene-dibenzosuberene[d]quinoxaline-C2,N)-mono-acetylacetonate]iridium(III)
    ,配搭適當的共主體結構,製備出一高效率濕製深紅光有機發光二極體(Organic light-emitting diode, OLED)。以在100 cd/m2亮度下為例,其外部量子效率為8.4%,色座標為(0.70, 0.27);在10 cd/m2亮度下,外部量子效率為11.2%,色座標為(0.72, 0.27),為目前濕製深紅光OLED的世界紀錄。以材料設計的角度來看,此元件獲得高效率的原因為:一、螺旋笏改變了分子間緻密的堆疊方式,減少了染料間的濃度焠熄效應;二、染料具有較高的分子量,呈現較好的機械性質,使濕製發光層擁有良好的成膜性。以元件結構設計的角度來看,此其高效率的原因為:一、好的主客體能階搭配,使激子在主體上產生;二、合適的主體,具有能將激子能量有效地轉移給客體之特性;三、主體或共主體具有電子捕捉的特性,促使身為少數載子的電子,可以更有效注入,使載子注入平衡。


    Deep-red emission can be applied for fabricating high quality, wide color gamut displays as well as physiologically-friendly, low color temperature lighting source. Emitters with wet-process feasibility are highly desirable to fabricate cost-effective large-area-size devices via roll-to-roll fabrication. We demonstrate here the high-efficiency, wet-process feasible deep-red organic light-emitting diodes by using a suitable co-host structure coupling with a phosphorescent emitter, [bis-(spirofluorene-dibenzosuberene[d]quinoxaline-C2,N)-monoacetylacetona-te]iridium(III), using doubly ortho-linked qiunoxaline/diphenylfluorene hybrids as ligands. The resulting device shows an external quantum efficiency (EQE) of 8.4% with CIExy (0.70, 0.27) at 100 cd/m2 and a maximum EQE of 11.2% with CIExy (0.72, 0.27) at 10 cd/m2, the highest EQE among all reported deep-red devices via wet-process. From material perspective, the record high efficiency may be attributed to the spirally configured fluorene moiety to prevent concentration-quenching effect and the high molecular weight of the emitter to enable the wet-processed emissive layer with good film-forming property. From device architecture perspective, the high efficiency may be attributed to a paired host and guest energy-levels to allow excitons generated on the host, a proper host to enable an effective host-to-guest energy transfer, and the employed host/co-host with electron trapping character to enable a balanced carrier injection.

    摘要 I Abstract II 致謝 IV 目錄 VIII 圖目錄 XII 表目錄 XV 壹、緒論 1 貳、文獻回顧 4 2-1 OLED的歷史發展 4 2-2 OLED的發光原理 19 2-3 OLED的能量傳遞機制 24 2-4 光色定義 27 2-5 元件出光機制 28 2-6 OLED材料之發展 30 2-6-1 陽極材料 30 2-6-2 電洞注入材料 31 2-6-3 電洞傳輸材料 31 2-6-4 電子傳輸材料 32 2-6-5 電子注入材料 33 2-6-6 陰極材料 33 2-7 紅光OLED之發展 34 2-8 濕製OLED之發展 38 參、實驗方法 43 3-1 材料 43 3-1-1 材料之功能、全名及簡稱 44 3-1-2 本研究所使用有機材料之化學結構式 45 3-1-3 材料性質之量測 49 3-1-4 材料NMR譜圖分析 51 3-2 元件設計及製備 52 3-2-1 元件電路設計 52 3-2-2 ITO基材清潔 53 3-2-3 旋轉塗佈電洞傳輸層 53 3-2-4 旋轉塗佈發光層 54 3-2-5 熱蒸鍍製程 54 3-2-6 成膜鍍率測定 55 3-2-7 有機層之製備 56 3-2-8 無機層之製備 56 3-3 元件之量測及發光效率計算 57 肆、結果與討論 59 4-1 材料特性 59 4-2 neat film發光層 65 4-3 主體效應 67 4-3-1 元件結構 67 4-3-2 主體材料對紅光OLED的影響 68 4-3-3 染料濃度對紅光OLED的影響 70 4-4 共主體效應 76 4-4-1 共主體元件結構 76 4-4-2 共主體材料對紅光OLED的影響 77 伍、結論 82 陸、參考文獻 84 附錄、個人著作目錄 94 (A)期刊論文 94 (B)研討會論文 94

    1. J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-1334.
    2. O. Prache, Displays, 2001, 22, 49.
    3. J. Y. Lee, J. H. Kwon and H. K. Chung, Org. Electron., 2003, 4, 143.
    4. S. R. Forrest, Nature, 2004, 428, 911.
    5. A. R. Duggal, J. Shiang, C. M. Heller and D. F. Foust, Appl. Phys. Lett., 2002, 80, 3470.
    6. B. W. D’Andrade, R. J. Holmes and S. R. Forrest, Adv. Mater., 2004, 16, 624.
    7. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park and K. Lee, Adv. Mater., 2002, 14, 1275.
    8. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen and H. Y. Chen, Chem. Mater., 2009, 21, 2565.
    9. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
    10. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe and C. Adachi, Appl. Phys. Lett., 2005, 86, 071104.
    11. V. Cleave, G. Yahioglu, P. Le Barny, R. H. Friend and N. Tessler, Adv. Mater., 1999, 11, 285.
    12. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J.Applied Phys., 2001, 90, 5048.
    13. J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li and R. S. Liu, Org. Electron., 2007, 8, 29.
    14. C. H. Wu, P. I. Shih, C. F. Shu and Y. Chi, Appl. Phys. Lett., 2008, 92, 233303.
    15. N. Koch, A. Elschner, J. Schwartz and A. Kahn, Appl. Phys. Lett.. 2003, 82, 2281.
    16. J. X. Tang, C. S. Lee, S. T. Lee and Y. B. Xu, Chem. Phys. Lett.. 2004, 396 , 92.
    17. A. Wan, J. Hwang, F. Amy and A. Kahn, Org. Electron., 2005, 6 , 47.
    18. J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue, Adv. Func. Mater., 2008, 18, 121.
    19. J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue and C. C. Chiang, Org. Electron., 2008, 9, 291.
    20. Z. Y. Xie, L. S. Hung and S. T. Lee, Appl. Phys. Lett., 2001, 79, 1048.
    21. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Appl. Phys. Lett., 2001, 79, 156.
    22. F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang and L. Zuppiroli, Adv. Func. Mater., 2005, 15, 323.
    23. J. H. Jou, S. Z. Chen, C. C. An, S. H. Peng, T. Y. Ting, J. J. Shyue, C. L. Chin, C. T. Chen, and C. W. Wang , Dyes and Pigments, 2014, 113, 341.
    24. J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang, Y. Wei, F. Y. Tsai and C. T. Chen, J. Mater. Chem., 2011, 21, 12613.
    25. Brian W. D'Andrade, 2004.
    26. A. Bernanose, M. Comte, and P. Vouaux, J. chim. Phys. Phys.-Chim. Biol., 1953, 50, 64.
    27. M. Pope, P. Magnante, and H. P. Kallmann, J. Chem. Phys, 1963, 38, 2042.
    28. W. Helfrich, and W. G. Schneide, Phys. Rev. Lett., 1965 14, 229.
    29. W. Helfrich, and W. G. Schneider, J. Chem. Phys, 1966, 44, 2902.
    30. P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, Thin Solid Films, 1982, 94, 171-183.
    31. R. Partridge, Polymer, 1983, 24, 733.
    32. C. W. Tang, and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913-915.
    33. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 2001, 90, 5048.
    34. S. A. VanSlyke, C. W. Tang, and L. C. Roberts, US Patent, No. 4720432, 1988.
    35. C. W. Tang, S. A. Vanslyke, and C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
    36. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 1990, 347, 539.
    37. R. H. Friend, J. H. Burroughes, and D. D. Bradley, US Patent, No. 5247190, 1993.
    38. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 1988, 27, 713.
    39. J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, Jpn. J. Appl. Phys., 1993, 32, 917.
    40. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 1995, 67, 2281.
    41. J. Kido, M. Kimura, and K. Nagai, Science, 1995, 267, 1332.
    42. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 1997, 70, 152.
    43. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 1998, 395, 151.
    44. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, Appl. Phys. Lett., 2002, 80, 139.
    45. L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett., 2004, 84, 167.
    46. Y. Shao, Y. Yang, Appl. Phys. Lett., 2005, 85, 073510.
    47. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and C. Hu, Appl. Phys. Lett., 2006, 88, 193501.
    48. Y. Sun, and S. R. Forrest, Nature Photon., 2008, 2, 483.
    49. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. and Leo, Nature, 2009, 459, 234.
    50. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, Nature Photon., 2011, 5, 753.
    51. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234.
    52. J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen, and C. H. Lin, Adv. Funct. Mater., 2013, 23, 2750.
    53. J. H. Jou, Y. T. Su, S. H. Liu, Z. K. He, S. Sahoo, H. H. Yu, S. Z. Chen , C. W. Wang, and J. R. Lee. J. Mater. Chem. C, 2016, 4, 6070.
    54. A. Dodabalapur, Solid State Commun., 1997, 102, 259.
    55. W. D. Gill, J. Appl. Phys., 1972, 43, 5033.
    56. U. Wolf, V. I. Arkhipov, and H. Bassler, Phys. Rev. B, 1999, 59, 7507.
    57. S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. E. Seidler, and W. Riess, Phys. Rev. B, 1999, 60, 8791.
    58. Murgatro.Pn, Journal of Phys. D-Appl. Phys., 1970, 3, 151.
    59. http://phorlife.fisica.unina.it/fluorescence.php
    60. Dexter DL. A Theory of Sensitized Luminescence in Solids. J Chem. Phys., 1953, 21, 836.
    61. Forster T. *Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann Phys-Berlin 1948, 2, 55.
    62. C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry 1986.
    63. N. C. Greenham, R. H. Friend and D. D. C. Bradley, Adv. Mater., 1994, 6, 491.
    64. J. Yang and J. Shen, J.Appl. Phys., 1998, 84, 2105.
    65. Z. Liu, J. Pinto, J. Soares and E. Pereira, Syn. Met., 2001, 122, 177.
    66. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nat. Photonics, 2012, 6, 105.
    67. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, J. Appl. Phys., 1999, 86, 1688.
    68. K. Sugiyama, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys., 2000, 87, 295.
    69. S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160.
    70. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S. Thurm, Synthetic Metals, 2000, 111, 139.
    71. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Appl. Phys. Lett., 1999, 75, 766.
    72. C. Giebeler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, J. Appl.Phys., 1999, 85, 608.
    73. J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So and J. M. Shi, Appl. Phys. Lett., 2008, 93.
    74. E. H. Martin, J. Hirsch, Solid State Commun.,1969, 7, 783.
    75. G. Horowitz, Adv. Mater. ,1998 10, 365.
    76. A. Babel, S. A. Jenekhe, J. Am. Chem. Soc., 2003, 125, 13656.
    77. J. M. Warman, A. M. Van de Craats, Mol. Cryst. Liq. Cryst., 2003, 396 41.
    78. J. Shi, C. W. Tang and C. H. Chen, US. Pat. 1997, No. 5,646,948.
    79. H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama and J. Kido, Chem. Mater., 2008, 20, 5951.
    80. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, Ieee Transactions on Electron Devices, 1997, 44, 1245.
    81. T. Brown, R. Friend, I. Millard, D. Lacey, T. Butler, J. Burroughes and F. Cacialli, J. Appl. Phys., 2003, 93, 6159.
    82. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
    83. C. W. Tang, S. A. Vanslyke and C. H. Chen, J. App. Phys., 1989, 65, 3610.
    84. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
    85. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett., 2001, 78, 1622.
    86. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971.
    87. K. Saito, N. Matsusue, H. Kanno, Y. Hamada, H. Takahashi and T. Matsumura, J.Appl. Phys., 2004, 43, 2733.
    88. Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng and C. S. Liu, J. Mater. Chem., 2005, 15, 460.
    89. J. S. Huang, T. Watanabe, K. Ueno and Y. Yang, Adv. Mater., 2007, 19, 739.
    90. C. H. Wu, P. I. Shih, C. F. Shu and Y. Chi, Appl. Phys. Lett., 2008, 92, 23.
    91. W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang and J. H. Kwon, Org. Electron., 2009, 10, 240.
    92. C. H. Chien, F. M. Hsu, C. F. Shu and Y. Chi, Org. Electron., 2009, 10 , 871.
    93. J. H. Jou, Y. C. Hsieh, H. H. Yu, C.C. An, C. J. Li, C. T. Chen, W. S. Chaob, H. W. Liu, and J. J. Shyue, Org. Electron., 2015, 26, 285.
    94. J. H. Jou. "The Seventh Chapter." OLED Introdcution. Taiwan, Gau Li, 2015. Print.
    95. William Feehery, Dupont, ”OLED lighting manufacturing cost,” SSL Manufacturing Workshop, Fairfox, VA, April 2009
    96. J. H. Jou, M. C. Sun, H. H. Chou, and C. H. Li, Appl. Phys. Lett. 87, 047508, 2005.
    97. “DuPont Teams with Dainippon Screen to Develop Printed OLED Technology.”, OLED-info, May 2008.
    98. E. Smith. “Solution Processing for OLED TVs”, October 2012.
    99. DuPont, Kateeva Partner to Advance OLED Inkjet Printing - Analyst Blog, Zacks Equity Research, Retrieved June 02, 2015, from http://finance.yahoo.com/news/dupont-kateeva-partner-advance-oled-212609093.html
    100. D. Jury. "Letterpress: The Allure of the Handmade." Rotovision, August, 2004. Print.
    101. S. A. Ruiz, and C. S. Chen, Soft Matter, 3, 168-177, 2007.
    102. J. H. Jou, K. Y. Chou, F. C. Yang, A. Agrawal, S. Z. Chen, J. R. Tseng, C. C. Lin, P. W. Chen, K. T. Wong, and Y. Chi, Appl. Phys. Lett., 104, 203304, 2014.
    103. J. H. Jou, Y. T. Su, M. T. Hsaio, H. H. Yu, Z. H. He, S. C. Fu, C. H. Chiang, C. T. Chen, C. H. Chou, and J. J. Shyue, J. Phys. Chem. C, 2016, 120, 18794-18802.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE