研究生: |
陳思丞 |
---|---|
論文名稱: |
顱內梭狀動脈瘤血液動力特性之理論與實驗研究 Theoretical and Experimental Study on the Hemodynamics of Intracranial Fusiform Aneurysms |
指導教授: |
劉通敏
Liou, Tong-Miin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 191 |
中文關鍵詞: | 顱內梭狀動脈瘤 、囊狀動脈瘤 、脈動流 、數值計算 、血液動力因子 、體外實驗 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據統計資料,腦血管疾病一直高居國人十大死因前幾名,主因就是顱內動脈瘤破裂,但在先前文獻中均偏重於囊狀動脈瘤,梭狀動脈瘤及剝離狀動脈瘤則較少見;而實驗文獻上大部分為理想化模型,且無文獻探討瘤體不對稱性對於血液動力因子之影響,並少有體外梭狀動脈瘤模型實驗與數值計算相互驗證之研究結果。故本研究乃藉數值模擬計算方式探討顱內內頸動脈(ICA)梭狀動脈瘤脈動流場特性與瘤體不對稱性之影響,並搭配體外模型視流觀測與壁面壓力量測實驗驗證計算結果之可信度,再與先前文獻中囊狀動脈瘤流場特性做比較。研究中先利用醫學影像結合三維重建技術建構出瘤體不對稱性相異與加裝人工支架後之梭狀瘤及特定病患梭狀動脈瘤結構,並以玻璃和RP快速射出成型製作體外實驗模型;數值計算上採用有限體積離散方法求解依時性非穩態不可壓縮Navier-Stokes方程組,其中時間項採用二階Crank-Nicolson法,而對流項與擴散項分別採用二階上風差分法與二階中央差分法予以離散,並搭配SIMPLEC演算法解決壓力與速度耦合問題。體外實驗與數值計算之脈動流場參數中Womersley Number為4.0,雷諾數變化範圍202~384,平均值為266。計算結果乃透過探討血液動力因子來呈現,這些血液動力因子包含瘤內主流場與二次流場結構、流入瘤內流量(相對於母管截面最大流量)、瘤體壁面剪應力(WSS)及壁面壓力分布等。本文結果顯示,體外實驗與數值計算之流場與壓力分佈(時間與空間)相當一致。不對稱梭狀瘤方面,在分析血液動力因子並與文獻比較後得知,瘤內流場均有迴流區並伴隨逸放現象;此外,隨梭狀瘤成長及外型不對稱性增大,較薄的瘤體中心壁面剪應力變化減小,反而不易破裂,而最大剪應力皆發生在出口端壁面,正負差值最大;而在加裝人工支架後,瘤內流速降低、瘤內總流量下降40%、瘤內剪應力亦降至利於血栓形成之範圍內。特定病患梭狀瘤部分,其瘤體上部血流量(38%)較下部(22%)大;瘤壁剪應力相位間變化不大,最大值亦發生在瘤體出口端壁面(116.7dyne/cm2),動脈瘤內壁面平均剪應力隨時間變化範圍皆在抑制血栓形成之臨界值Low WSS(5 dyne/cm2)以上,意即瘤內血小板不易聚集形成血栓且壁面持續受到拉伸與擠壓的應力作用,導致動脈瘤成長變大;瘤體壁面壓力各相位間變化最大差值可達6522dyne/cm2;最後與先前文獻之囊狀動脈瘤比較結果發現,瘤內血流量梭狀動脈瘤為囊狀之2.7倍,但血管壁較薄的瘤內頂部周圍壁面最高剪應力囊狀為梭狀之1.7倍,且壁面壓力隨脈動週期變化最大值囊狀為梭狀之2倍。最後歸納出囊狀動脈瘤破裂機率較高,而梭狀動脈瘤不易破裂但生長能力較強,與先前臨床研究結果相呼應;這些訊息可提供臨床病理分析與安裝人工支架之參考。
Agrawal D., Mahapatra A.K. and Mishra N.K., (2005) Fusiform Aneurysm of a Persistent Trigeminal Artery, Journal of Clinical Neuroscience, 12:500-503.
Appanaboyina S., Mut F., Lohner R., Putman C. and Cebral J., (2009) Simulation of Intracranial Aneurysm Stenting: Techniques and Changes, Comput. Methods Appl. Mech. Engrg. Doi:10.1016/j.cma.2009.01.017.
Bando K. and Berger S.A., (2003) Research on Fluid-Dynamic Design Criterion of Stent Used for Treatment of Aneurysms by Means of Computational Simulation, Computational Fluid Dynamics J., 11(4):527-531.
Boussel L., Wintermark M., Martin A., Dispensa B., VanTijen R., Leach J., Rayz V., Acevedo-Bolton G., Lawton M., Higashida R., Smith W.S., Young W.L. and Saloner D., (2007) Monitoring Serial Change in the Lumen and Outer Wall of Vertabrobasilar Aneurysm, AJNR Am J Neuroradiol, 29:259-264.
Brownlee B.D., Tranmer B.I. , Sevick R.J., Karmy G. and Curry J.C., (1995) Spontaneous Thrombosis of an Unruptured Anterior Communicating Artery Aneurysm, Stroke, 26:1945-1949.
Burleson A.C., Strother C.M. and Turitto V.T., (1995) Computer Modeling of Intracranial Saccular and Lateral Aneurysms for the Study of Their Hemodynamics, Neurosurgery., 37(4):774-782; discussion 782-784.
Cebral J.R., Rainald L., Orlando S. and Yim P.J., (2001a) On the Model of Carotid Artery BloodFlow from Magnetic Resonance Images, Bioengineering Conference ASME 2001., 50.
Cebral J.R., Yim P.J., Löhner R., Soto O., Marcos H. and Choyke P.L., (2001b) New Methods for Computational Fluid Dynamics of Carotid Artery from Magnetic Resosnance Angiography, Proc. SPIE Medical Imaging, San Diego, California, February 2001.
Cebral J.R., Castro M.A., Burgess J.E., Pergolizzi R.S., Sheridan M.J. and Putman C.M., (2005) Characteristics of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models, AJNR Am J Neuroradiol, 26:2550-2559.
Cil B.E., (2004) Akpınar E., Peynircioglu B., Cekirge S. (2004) Utility of Covered Stents for Extracranial Internal Carotid Artery Stenosis, AJNR Am J Neuroradiol., 25:1168-1171.
Cotran, Kumar and Robbins, (1998) Robbins Pathologic Basis of Disease, W.B. Saunders Company, 4th edition.
Crawford T., (1959) Some Observations on the Pathogenesis and Natural History of Intracranial Aneurysms, J. Neurol. Neurosurg. Psychiat., 22:259.
Crompton M.R., (1966) Mechanism of Growth and Rupture in Cerebral Berry Aneurysms, Br. Med. J., 1:1138-1142.
Echiverri H.C., Rubino F.A., Gupta S.R. and Gujrati M., (1989) Fusiform Aneurysm of the Vertebrobasilar Arterial System, Stroke, 20:1741-1747.
Ferguson G.G., (1970) Turbulence in Human Intracranial Saccular Aneurysms, J Neurosurg., 33(5):485-497.
Ferguson G.G., (1972) Physical Factors in the Initiation, Growth, and Rupture of Human Intracranial Saccular Aneurysms, J. Neurosurg., 37:666-677.
Gao F., Ohta O. and Matsuzawa T., (2008) Fluid-Structure Interaction in Layered Aortic Arch Aneurysm Model: Assessing the Combined Influence of Arch Aneurysm and Wall Stiffness, Australas Phys Eng Sci Med., Mar;31(1):32-41.
Gonzalez C.F., Cho Y.I., Ortega H.V. and Moret J., (1992) Intracranial aneurysms: flow analysis of their origin and progression, AJNR, Vol. 13, pp. 181-188.
Hardesty W.H., Roberts B., Toole J.F. and Royster H.P., (1960) Studies of Carotid-artery Blood Flow in Man, N Engl J Med., 263:944-946.
Hashimoto T., (1984) Dynamic Measurement of Pressure and Flow Velocities in Glass and Silastic Berry Aneurysms, Neurol. Res., 6:22-28.
Hassan T., Timofeev E.V., Ezura M., Saito T., Takahashi A., Takayama K. and Yoshimoto T., (2003) Hemodynamics Analysis of an Adult Vein of Galen Aneurysm Malformation by Use of 3D Image-Based Computational Fluid Dynamics, AJNR Am J Neuroradiol, 24:1075-1082.
Jou L.D., Quick C.M., Young W.L., Lawton M.T., Higashida R., Martin A. and Saloner D., (2003) Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysm, AJNR Am J Neuroradiol, 24:1804-1810.
Jou L.D., Wong G., Dispansa B., Lawton M.T., Higashida R.T., Young W.L. and Saloner D., (2005) Correlation between Lumenal Geometry Changes and Hemodynamics in Fusiform Intracranial Aneurysm, AJNR Am J Neuroradiol, 26:2357-2363.
Kayembe K.N.T., Sasahara M. and Hazama F., (1984) Cerebral Aneurysms and Variations of the Circle of Willis, Stroke, 15:846-850.
Le Roux P., Winn H., Newell D., (2004) Management of Cerebral Aneurysms, Saunders, Philadelphia.
Liepsch D.W., Steiger H.J., Poll A. and Reulen H.J., (1987) Hemodynamic Stress in Lateral Saccular Aneurysms, Biorheology., 24(6):689-710.
Liou T.M., Chang W.C. and Liao C.C., (1997a) LDV Measurements in Lateral Model Aneurysms of Various Sizes, Experiments in Fluids, 23:317-324.
Liou T.M. and Liao C.C., (1997b) Flowfields in Lateral Aneurysm Arising from Parent Vessels with Different Curvatures Using PTV, Experiments in Fluids, 23:288-298.
Liou T.M. and Liao C.C., (1997c) PTV Study of the Womersley Number Effects on Pulsatile Flow in a Lateral Aneurysm Model, Proceedings of ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada.
Little J.R., Louis P. St., Weinstein M. and Dohn D.F., (1981) Giant Fusiform Aneurysm of the Cerebral Arteries, Stroke, 12:183-188.
Löw M., Perktold K. and Raunig R., (1993) Hemodynamics in Rigid and Distensible Saccular Aneurysms: a Numerical Study of Pulsatile Flow Characteristics, Biorheology., 30(3-4):287-298.
Malek A.M., Alper S.L. and Izumo S., (1999) Hemodynamic Shear Stress and Its Role in Atherosclerosis, JAMA, 282:2035-42.
Miyamoto S., Nagata I., Yamada K., Ueno Y., Nakahara I., Toda H., Hattori I. and Kikuchi H., (1999) Delayed Thrombus Propagation after Parent Artery Clipping for Giant Fusiform Aneurysms of the Circle of Willis, Surg Neurol, 51:89-93.
Moore J.E., Xu C., Glagov S., Zarins C.K. and Ku D.N., (1994) Fluid Wall Shear Stress Measurements in a Model of Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis, Atherosclerosis, 110:225-240.
Nichols W. and O’Rourke M., (1990) McDonald’s Flow in Arteries, Lea & Febiger, Philadelphia, London.
Patankar S.V., (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere/McGraw-Hill, Washington, 1090-1093.
Peattie R.A., Riehle T.J. and Bluth E.I., (2004) Pulsatile Flow in Fusiform Models of Abdominal Aortic Aneurysms: Flow Fields, Velocity Patterns and Flow-Induced Wall Stresses, ASME, Vol.126:438-446.
Perktold K., Perter R. and Resch, M., (1989) Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation with an Aneurysm, Biorheology., 26(6):1011-1030.
Rayz V.L., Lawton M.T., Martin A.J., Young W.L. and Saloner D., (2008) Numerical Simulation of Pre-and-Postsurgical Flow in a Giant Basilar Aneurysm, Journal of Biomechanical Engineering, Vol. 130:021004.
Rhee K., Han M.H., Cha S.H. and Khang G., (2001) The Changes of Flow Characteristics Caused by a Stent in Fusiform Aneurysm Models, Proceedings of the 23rd Annual EMBS International Conference, October 25-28, Istanbul, Turkey.
Rhee K., Han M.H. and Cha S.H., (2002) Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity, Annals of Biomedical Engineering, Vol. 30:pp.894-904.
Rhie C. M. and Chow W. L., (1983) Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA J., 21(11): 1525–1532.
Rosenorn J., Eskesen V., Schmidtt K. and Ronde F., (1987) The Risk of Rebleeding from Ruptured Intracranial Aneurysms, J. Neurosurg., 67:329-332.
Sahs A.L. (1966) Observations on the Pathology of Saccular Aneurysms, J. Neurosurg., 24:79-806.
Sheard G.J., (2008) Flow Dynamics and Wall Shear-Stress Variation in a Fusiform Aneurysm, J Eng Math, DOI 10.1007/s10665-008-9261-z.
Stehbens W.E., (1983) The Pathology of intracranial arterial aneurysms and their complications, In: Fox JL, ed. Intracranial Aneurysms, New York: Springer-Verlag, pp.272-357.
Steiger H.J., Poll A., Liepsch D. and Reulen H.J., (1987) Hemodynamic Stress in Lateral Saccular Aneurysms, Acta Neurochir., 86:98-105.
Steiger H.J., Liepsch D.W., Poll A. and Reulen, H.J., (1988) Hemodynamic Stress in Terminal Saccular Aneurysms: a Laser-Doppler Study, Heart Vessels., 4(3):162-169.
Suzuki J. and Ohara H., (1978) Clinicopathological Study of Cerebral Aneurysms: Origin, Rupture, and Growth, J. Neurosurg., 48:505-514.
Tognetti F., Limoni P. and Testa C., (1983) Aneurysm Growth and Hemodynamic Stress, Surgical Neurology, 20:74-78.
Tsai T.H., (2006) 應用影像重建技術、數值模擬及流場觀測探討內頸動脈瘤之血液動力特性,國立清華大學,碩士論文。
Wardlaw J.M. and White P.M., (2000) The Detection and Management of Unruptured Intracranial Aneurysms, Brain., 123:205–21
Womersley J.R., (1955) Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries when the Pressure Gradient is Known, J Physical., 127(3):553-563.