研究生: |
鍾怡柔 Chung, Yi Jou |
---|---|
論文名稱: |
無鉛鈣鈦礦太陽能電池之先導研究 Preliminary Study on Lead-free Perovskite Solar Cells |
指導教授: |
衛子健
Wei, Tzu Chien |
口試委員: |
刁維光
廖英志 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 無鉛鈣鈦礦太陽能電池 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前高效率的鈣鈦礦太陽能電池材料中皆含有一定濃度的有機鉛,但鉛為有毒性的元素,這將會限制鈣鈦礦太陽能電池在諸多國家產業化的推動,例如歐盟國家在2006年訂立的ROHS(Restriction of Hazardous Substances),即針對各型電子電器設備中的有害成分含量加以限制,如鉛的含量不可超過0.1%。因此含鉛的鈣鈦礦太陽能電池的後續技術要如何發展以符合世界各國類似ROHS的環境規範,將會直接影響其位於太陽光電產業的競爭力。
本研究計畫中,為了克服含鉛的問題,我們評估是否可使用鉛的同族元素「錫」來代替。首先,本研究嘗試用一步驟法來合成無鉛鈣鈦礦(CsSnI3),發現CsSnI3前驅物的溶劑會影響無鉛鈣鈦礦的結晶型態,使用二甲基亞碸(Dimethyl sulfoxide,DMSO)當作CsSnI3前驅物的溶劑可以形成我們要的無鉛鈣鈦礦吸光層的結晶形態。接著,在實驗過程中發現,Sn2+非常容易氧化成Sn4+而破壞無鉛鈣鈦礦的結構,為了減少Sn2+氧化成Sn4+的比例,本研究添加SnF2來補足Sn2+的空缺。我們也發現可以藉由添加過量的SnI2來改善CsSnI3薄膜之均勻性,增加無鉛鈣鈦礦吸光層的面積,預期添加過量的SnI2有較佳的光伏特性。
在實驗過程中,我們發現在還沒旋塗電洞傳輸材料及蒸鍍金前,將元件放置在無氧無水的環境下,其吸光能力經過一個月後可以維持93.8%。另外我們還發現電洞傳輸材料中的添加劑TBP是影響CsSnI3中Sn2+氧化成Sn4+的原因之一。
截至目前為止,我們以上述方式製作出的無鉛鈣鈦礦CsSnI3元件,在覆蓋上電洞傳輸材料及蒸鍍金後,無鉛鈣鈦礦層已經褪色至不具有吸收光的能力,以至於在進行I-V特性曲線時測不出其擁有任何的光電轉換效率。儘管本研究最後還是沒有做出有效率的無鉛鈣鈦礦太陽能電池,不過我們發現的一些實驗結果希望可以作為後續無鉛鈣鈦礦太陽能電池研究之參考。
關鍵字:無鉛鈣鈦礦太陽能電池、CsSnI3、Sn2+氧化、SnF2、SnI2、吸光層褪色。
Highly efficient CH3NH3PbI3 based perovskite solar cell contains a significant amount of toxic organic-lead which limits large-scale use world-widely. For instance, the ROHS (Restriction of Hazardous Substances) directive announced by EU has regulated hazardous ingredients like lead content should not exceed 0.1% in electronic equipment. Therefore, how to comply with environmental regulations for perovskite solar cell has become an urgent topic.
In order to overcome this problem, we try our attempt to replace notorious lead with tin in perovskite crystal. In particular, we examine the synthetic route on the structure deformation as well as photovoltaic properties of lead-free perovskite. Firstly, we try one-step method to synthesize the lead-free perovskite. We found that the solvent plays an important role on the phase formation of lead-free perovskite. As a consequence, lead-free perovskite CsSnI3 can be obtained by using DMSO as the solvent in the precursor solution.
However, Sn2+ in CsSnI3 is easily oxidized to Sn4+ that it will destroy the structure of lead-free perovskite. Therefore, we add SnF2 to fill the vacancy of Sn2+. In this part, the effect of SnF2 addition is investigated and we found excess SnI2 addition forms uniform film of lead-free perovskite and expected to have better photovoltaic properties on the lead-free perovskite solar cells.
We find that environment is the major factor of Sn2+ oxidized to Sn4+. If the lead-free perovskite sample is placed in an oxygen-free and anhydrous environment, and its absorbance can maintained 93.8% over a month. However, during the introduction of hole transport material (HTM), TBP which is a necessary additive in HTM drives Sn2+ oxidation and destroy the photovoltaic property of the resultant cell.
Unfortunately, we fail to report any photovoltaic data currently. Details of failure analysis is undergoing and technical issue of device fabrication is expected to be solved in near future.
1. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
2. Bernal, C.; Yang, K., First-principles hybrid functional study of the organic–inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3. The Journal of Physical Chemistry C 2014, 118 (42), 24383-24388.
3. Liu, D.; Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics 2014, 8 (2), 133-138.
4. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G., Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
5. Marshall, K. P.; Walton, R. I.; Hatton, R. A., Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A 2015, 3 (21), 11631-11640.
6. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-647.
7. Xu, P.; Chen, S.; Xiang, H.-J.; Gong, X.-G.; Wei, S.-H., Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3. Chemistry of Materials 2014, 26 (20), 6068-6072.
8. Chung, I.; Lee, B.; He, J.; Chang, R. P.; Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485 (7399), 486-489.
9. Zhou, Y.; Garces, H. F.; Senturk, B. S.; Ortiz, A. L.; Padture, N. P., Room temperature “one-pot” solution synthesis of nanoscale CsSnI 3 orthorhombic perovskite thin films and particles. Materials Letters 2013, 110, 127-129.
10. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
11. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
12. Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A., Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 2016, 23, 138-144.
13. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-480.
14. Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3. Solid state communications 2003, 127 (9), 619-623.
15. Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society 2014, 136 (22), 8094-8099.
16. Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T., Synthesis and characterization of CsSnI3 thin films. Applied Physics Letters 2010, 96 (22), 221903.
17. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
18. Im, J.-H.; Luo, J.; Franckevicius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N.-G., Nanowire perovskite solar cell. Nano letters 2015, 15 (3), 2120-2126.
19. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.
20. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546.
21. Zhang, H.; Shi, Y.; Yan, F.; Wang, L.; Wang, K.; Xing, Y.; Dong, Q.; Ma, T., A dual functional additive for the HTM layer in perovskite solar cells. Chemical Communications 2014, 50 (39), 5020-5022.
22. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2.
23. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016.
24. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M., Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
25. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. Journal of the American Chemical Society 2016.
26. Jellicoe, T. C.; Richter, J. M.; Glass, H. F.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941-2944.
27. Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters 2014, 104 (6), 063901.
28. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (9), 3061-3068.
29. Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N., Impact of Anionic Br–Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBr x) Solar Cells. The Journal of Physical Chemistry C 2015, 119 (4), 1763-1767.
30. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522-525.
31. Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G., Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process. The journal of physical chemistry letters 2016, 7 (5), 776-782.
32. Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L., A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science 2014, 7 (9), 2963-2967.
33. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., CH3NH3Sn x Pb (1–x) I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011.
34. Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L., Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors. Chemistry of materials 2001, 13 (10), 3728-3740.
35. (a) Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology 2014, 9 (11), 927-932; (b) Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray‐Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie 2014, 126 (37), 10056-10061; (c) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014.
36. Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W., Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials 2014, 26 (38), 6647-6652.
37. (a) Boopathi, K. M.; Ramesh, M.; Perumal, P.; Huang, Y.-C.; Tsao, C.-S.; Chen, Y.-F.; Lee, C.-H.; Chu, C.-W., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A 2015, 3 (17), 9257-9263; (b) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2013, 136 (2), 622-625.
38. (a) You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. 2014; (b) Kim, B. J.; Kim, D. H.; Lee, Y.-Y.; Shin, H.-W.; Han, G. S.; Hong, J. S.; Mahmood, K.; Ahn, T. K.; Joo, Y.-C.; Hong, K. S., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy & Environmental Science 2015, 8 (3), 916-921; (c) Jung, J. W.; Chueh, C. C.; Jen, A. K. Y., High‐Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole‐Transporting Material. Advanced Energy Materials 2015, 5 (17).
39. (a) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters 2013, 13 (4), 1764-1769; (b) Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S., Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A 2014, 2 (24), 9221-9225.
40. Zhang, W.; Anaya, M.; Lozano, G.; Calvo, M. E.; Johnston, M. B.; Míguez, H.; Snaith, H. J., Highly Efficient Perovskite Solar Cells with Tunable Structural Color. Nano letters 2015, 15 (3), 1698-1702.
41. (a) Smith, I. C.; Hoke, E. T.; Solis‐Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie 2014, 126 (42), 11414-11417; (b) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295-298; (c) Kwon, Y. S.; Lim, J.; Yun, H.-J.; Kim, Y.-H.; Park, T., A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy & Environmental Science 2014, 7 (4), 1454-1460.
42. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry 2013, 52 (15), 9019-9038.
43. (a) Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011; (b) Zuo, F.; Williams, S. T.; Liang, P. W.; Chueh, C. C.; Liao, C. Y.; Jen, A. K. Y., Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells. Advanced Materials 2014, 26 (37), 6454-6460.
44. Philibert, C. The present and future use of solar thermal energy as a primary source of energy. IEA 2005.
45. ACEsuppliers, July 29 2008.
46. Sunrise Global Solar Energy, 2008.
47. "薄膜太陽能電池製程與產品特性分析" January 12 2009.
48. 李鐵, "激光加工在非晶矽薄膜太陽能電池製造中的應用"
49. "快速成長的薄膜太陽能電池," 工業材料雜誌, May 2008.
50. Becky Stuart, PV Magazine, July 28 2010.
51. Fang, ACS, August 30 2014.
52. Goodnight Earth, April 29 2014.
53. NREL. Research Cell Efficiency Records, 2015.
54. 太陽能光伏網, October 17 2014.
55. A Business Division of Trend Force Corp, Energy Trend, 2015.
56. X-ray diffraction – Bruker D8 Discover
57. Wikipedia, http://en.wikipedia.org/wiki/Beer–Lambert law
58. 國立清華大學化學工程學系系網站
59. 洪承佑,"液態鈣鈦礦太陽能電池效能衰減及腐蝕現象之研究"
60. 蘇子森, "定電流陽極沉積法製備二氧化鈦薄膜及其應用於鈣鈦礦太陽能電池阻隔層之研究"