簡易檢索 / 詳目顯示

研究生: 鍾宜君
I-Chun Chung
論文名稱: 多晶片模組構裝晶片熱擺置之最適化分析
Optimal Analysis of thermal Chip Placement for MultiChip Module Packaging
指導教授: 陳文華
Wen-Hwa Chen
鄭仙志
Hsien-Chie Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 多晶片模組構裝熱處理回應表面法遺傳演算法最適化設計晶片接面溫度晶片擺置
外文關鍵詞: Multichip Module, Thermal Management, Response Surface Method, Genetic Algorithm, Optimization Scheme, Chip Junction Temperature, Chip Placement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子構裝之晶片數目增加及電子構裝體積縮小,多晶片模組構裝之散熱效能愈為重要。在不改變構裝結構及元件材料下,欲提升多晶片模組構裝熱效能,晶片之最適化擺置為一重要研究方向。本論文旨在針對具不同數目及發熱功率晶片之多晶片模組構裝,在自然對流環境下,探討晶片擺置之最適化法,以提高多晶片模組構裝之散熱效能。
    本論文所提出之最適化法分別為直接最適化法、間接最適化法、混合式最適化法及精進型混合式最適化法。直接最適化法係直接利用ANSYS®有限單元熱傳分析計算不同晶片擺置下之總晶片接面溫度,再結合遺傳演算法之演化搜尋,求得晶片最適擺置。間接最適化法係結合ANSYS®有限單元熱傳分析及以回應表面法為基礎之修正型疊加法,快速建立多晶片模組構裝之晶片接面溫度回應表面,再結合序列二次規劃法求得晶片最適擺置及總晶片接面溫度。混合式最適化法乃結合直接最適化法與間接最適化法之優點,利用ANSYS®有限單元熱傳分析及遺傳演算法之全域搜尋特性,以回應表面法為基礎,建立晶片接面溫度方程式,並利用序列二次規劃法快速求取晶片最適擺置。而精進型混合式最適化法乃進一步結合變數設計範圍縮減法,根據所求得之較優晶片擺置設計增加新晶片擺置設計,不斷迭代求取新回應表面及計算最小總晶片接面溫度之步驟,以精進混合式最適化法之效能。
    藉由數種多晶片模組構裝,本論文分別評比所提出各種晶片擺置最適化法之效能。直接最適化法因經過多次演化,而使用大量計算量,但卻只能得較優解。間接最適化法所提出之以回應表面為基礎之修正型疊加法,因建立了包含晶片發熱功率及晶片位置影響之晶片接面溫度方程式,不僅具傳統回應表面法之準確性,且能大量減少數據量。混合式最適化法結合直接最適化法及間接最適化法之特點,大幅降低了所需數據量,故計算效率遠高於傳統回應表面法、直接最適化法及間接最適化法,唯所建立之回應表面尚不能準確計算晶片最適擺置下之總晶片接面溫度。精進型混合式最適化法所需數據量雖略多於混合式最適化法,但遠小於傳統回應表面法、直接最適化法及間接最適化法,不但能準確、快速求得晶片最適擺置及總晶片接面溫度值,且因可透過停止條件之調整,尤適用於具多數晶片之多晶片模組構裝散熱分析。
    對於晶片之最適擺置,除散熱外,電訊方面考量亦相當重要。本論文所提出之最適化法可進一步結合電訊限制條件,使其應用延伸至同時考慮散熱及電訊效應之多晶片模組構裝晶片最適擺置設計,更切合實務。此外,以本論文之成果為基礎,結合熱應力分析,亦可探討多晶片模組構裝於晶片最適擺置下之可靠度,以作為散熱增益設計之參考。


    As the number of chips within electronic packaging increases while their feature sizes shrink, the thermal performance of multichip modules (MCMs) becomes increasingly critical. To upgrade the thermal performance of MCMs without changing package structure and materials, optimal chip placement is an important research aspect. Therefore, this work aims at enhancing the thermal performance of MCMs under natural convection by optimizing the chip placement. To attain the goal, novel chip placement optimization schemes are proposed.
    The chip placement optimization schemes proposed include the direct optimization scheme, the indirect optimization scheme, the hybrid optimization scheme and the modified hybrid optimization scheme. The direct optimization scheme directly calculates the total chip junction temperature of a MCM under various chip placements by ANSYS® finite element thermal analysis and obtains the optimal chip placement through genetic algorithm evolution. The indirect optimization scheme combines the ANSYS® finite element thermal analysis and a response surface based modified superposition method to effectively construct the response surfaces of chip junction temperature. With the constructed chip junction temperature response surfaces and sequential quadratic programming, an optimal chip placement and total chip junction temperature can be achieved. The hybrid optimization scheme combines the merits of the direct optimization scheme and the indirect optimization scheme. It integrates the ANSYS® finite element thermal analysis, a global search heuristic algorithm, genetic algorithm, and a response surface method to construct the chip junction temperature equations. The chip junction temperature equations constructed are adopted in sequential quadratic programming to find the optimal chip placement. The modified hybrid optimization scheme is the modification of the hybrid optimization scheme. The concept of design space reduction is employed. The procedures of adding new chip placement designs, constructing new chip junction temperature equations and finding minimum total chip junction temperature are repeated to upgrade the efficiency of the hybrid optimization scheme.
    To demonstrate the effectiveness of the proposed optimizaiton schemes, several thermal dissipation analysis problems associated with two types of MCM are performed. The results obtained show that the direct optimization scheme can only find better solution after massive computations. The response surface based modified superposition method proposed in the indirect optimization scheme can construct chip junction temperature equations that take the influence of chip power and placement into account. It has the same accuracy as the conventional response surface method with less computation. The hybrid optimization scheme largely reduced the computation time toward optimization and its computational efficiency is much higher than the conventional response surface method, the direct optimization scheme and the indirect optimization scheme. However, the constructed response surface is still insufficient to provide accurate total chip junction temperature under the optimal chip placement found. Although the modified hybrid optimization scheme needs a few more computations than hybrid optimization scheme, but its computational efficiency is much higher than the conventional response surface method, the direct optimization scheme and the indirect optimization scheme. It can calculate the optimal chip placement and total chip junction temperature effectively and accurately. Through an appropriate adjustment of the tolerance taken, the modified hybrid optimization scheme is especially useful for larger-scale MCM thermal design problems.
    With the consideration of electrical requirement, this work can be further devoted to deal with the optimization of chip placement of MCMs considering both thermal and electrical problems. Moreover, by incorporating the current result with thermal stress analysis, the reliability of MCMs can also be analyzed and used as a guideline for the thermal management of MCMs.

    摘要……………………………………………………………………….i 內容目錄………………………………………………………………xii 表目錄…………………………………………………………………xiv 圖目錄…………………………………………………………………xv 一、導論…………………………………………………………………1 二、多晶片模組構裝散熱效能分析……………………………………7 三、最適化法……………………………………………………………15 四、最適化法之發展……………………………………………………23 五、球柵陣列型多晶片模組構裝晶片擺置之最適化分析……………36 六、晶片直接接合型多晶片模組構裝晶片擺置之最適化分析………58 七、最適化法之效能評估………………………………………………62 八、結論與未來展望……………………………………………………70 參考文獻………………………………………………………………73

    1. Beebe, C., Carothers, J.D., and Ortega, A., “Object-oriented thermal placement using and accurate heat model, ” in Proc. the 32nd Hawaii International Conf. on System Science, 1999, pp. 1-10.
    2. Belegundu, A.D. and Chandrupatla, T.R., Optimization concepts and applications in engineering, Upper Saddle River, N.J., Prentice Hall, 1999.
    3. Box, G. E. P. and Wilson, K. B., “On the experimental attainment of optimum conditions,” J. of Royal Statistical Society, Series B, 1951, pp. 1-38.
    4. Chen, W. H., Cheng, H. C. and Chung, I. C., “A response surface for effective thermal characterization of multichips-module package”, in Proc. IMAPS Taiwan Technical Symposiumm, Kaohsiung, R.O.C., 2002, pp.1-10.
    5. Chen, W. H., Cheng, H. C. and Shen, H. A., "An effective methodology for thermal characterization of electronic packaging," IEEE Trans. on Components and Packaging Technologies, vol. 26, no. 1, 2003, pp. 222-232.
    6. Cheng, H.C. and Huang, Y.C., “Thermal placement optimization of MCMs using a force-directed based algorithm,” 6th IEEE Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, 2005, pp. 662-669.
    7. Cheng, H.C., Huang, Y.C., and Chen, W. H. “A force-directed-based optimization scheme for thermal placement design of MCMs,” IEEE Trans. on Advanced Packaging, vol. 30, no. 1, 2007, pp. 56-67.
    8. Coe, S., Areibi, S., and Moussa, M., “A hardware accelerator for VLSI circuit partitioning,” Computers and Electrical Engineering, vol. 33, 2007, pp. 233-248.
    9. Dorigo, M. and Stutzle, T., Ant colony optimization, Cambridge, Mass., MIT Press, 2004.
    10. Ellison, G. N., Thermal computations for electronic equipment, New York, Van Nostrand Reinhold Co., 1984.
    11. Fogel, L.J., Owens, A.J. and Walsh, M.J., Artificial intelligence through simulated evolution, John Wiley, 1966.
    12. Fu, S.L., Huang, Y.J., and Chang, Y.W., “Fuzzy logic based thermal design for MCM placement,” in Proc. IEMT/IMC Conf., 1998, pp. 179-184.
    13. Goldberg, D. E., Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading MA, 1989.
    14. Gurney, K., An introduction to neural networks, London, UCL Press, 1997.
    15. Haftka, R. T. and Kamat, M. P. (Eds.), Elements of structural optimization, The Hague, M. Nijhoff, Distributorsfor the U.S. and Canada, Kluwer Academic Publishers, Hingham, MA, USA, 1985.
    16. Holland, J.H., “Essays on cellular automata,” University of Illinois Press. 1970.
    17. Hopfield, J.J., "Neural networks and physical systems with emergent collective computational abilities, " Proc. of the National Academy of Sciences of the USA, vol. 79, no. 8, April, 1982, pp. 2554-2558.
    18. Huang, G. M. and Shan, Z., “A new HAD algorithm for optimal routing of hierarchically structured data networks,” in Proc. IEEE INFOCOM '95. Fourteenth Annual Joint Conf. of the IEEE Computer and Communications Societies, Bringing Information to People, vol. 2, 2-6 April, 1995, pp. 594-601.
    19. Jeevan, K., Seetharamu, K.N., Ishak, I.A. and Quadir, G.A., “Thermal management of multichipmodule (MCM) using genetic algorithms,” TENCON 2003 Conf. on Convergent Technologies for Asia-Pacific Region, vol. 1, 2003, pp. 474-478.
    20. Kacem, I., Hammadi, S., and Borne, P., “Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic,” Mathematics and Computers in Simulation, vol. 60, 2002, pp. 245–276.
    21. Khuri, A. I. and Cornell, J. A., Response surfaces: designs and analyses, New York, Marcel Dekker, 1996.
    22. Kim, T. S. and May, G. S., “Optimization of via formation in photosensitive dielectric layers using neural networks and genetic algorithms,” IEEE Trans. on Electronics Packaging Manufacturing, vol. 22, no. 2, April, 1999, pp. 128-136.
    23. Kos, A., “An approach to thermal placement in power electronics using neural networks, ” in Proc. ISCAS '93 IEEE Int’l Symposium on Circuits and Systems, 3-6 May, 1993, pp. 2427-2430.
    24. Kurbel, K., Schneider, B., and Singh, K., “Solving optimization problems by parallel recombinative simulated annealing on a parallel computer- an application to standard cell placement in VLSI design,” IEEE Trans. on Systems, Man, and Cybernetics-part B: Cybernetics, vol. 28, no. 3, June, 1998, pp. 454-461.
    25. Laarhoven, P.J.M. van and Aarts, E.H.L., Simulated annealing: theory and applications, Boston, Dordrecht, D. Reidel, 1987.
    26. Lall, B.S., Ortega, A., and Kabir, H., “Thermal design rules for electronic components on conducting boards in passively cooled enclosures,” in IEEE InterSociety Conf. Thermal Phenomena, 1994, pp. 50-61.
    27. Lee, J., “Thermal placement algorithm based on heat conduction analogy,” IEEE Trans. on Comp. and Packaging Technol., vol. 26, no. 2, June, 2003, pp. 473-482.
    28. Lei, C., “A MCM interconnect test generation optimization scheme based on ant algorithm and genetic algorithm,” IEEE 6th Int. Conf. on Electronic Packaging Technology, 30 Aug.-2 Sept., 2005, pp. 710 - 713.
    29. Liang, L. and Hamzehdoost, A., “Guidelines for thermal management of multichip modules,” in Proc. IEEE Electronic Components and Technology Conf., 18-20 May, 1992, pp. 787-791.
    30. Menezes, N., Baldick, R., and Pileggi, L. T., “A sequential quadratic programming approach to concurrent gate and wire sizing,” ICCAD-95 IEEE/ACM Int. Conf. on Computer-Aided Design, 5-9 Nov., 1995, pp. 144-151.
    31. Miller, B. L. and Goldberg, D. E., “Genetic algorithms, tournament selection and the effects of noise,” Complex Systems, vol. 9, 1996, pp. 193-212.
    32. Montgomery, D. C., Design and analysis of experiments, New York, Wiley, 1991.
    33. Nielsen, J., and Mack, R.L., Usability Inspection Methods, New York, John Wiley & Sons, 1994.
    34. Ohbu, T., Kodani, K., and Tada, N., “Study of power module package structures, ” in Proc. IWIPP Int. Workshop on Integrated Power Packaging, 14-15 July, 2000, pp. 46-50.
    35. Park, K.C., Chang, P.H. and Salisbury, J.K., “A unified approach for local resolution of kinematic redundancy with inequality constraints and its application to nuclear power plant,” in Proc. IEEE Robotics and Automation, vol. 1, 20-25 April, 1997, pp. 766-773.
    36. Pinjala, D., Khan, N., Ling, X., Teo, P.S., and Wong, E.H., “Thermal design of heat spreader and analysis of thermal interface materials (TIM) for multi-chip package, ” in Proc. Electronic Component and Technology Conf., 2002, pp. 1119-1123.
    37. Quinn, N. R. and Breuer, M. A., “A forced directed component placement procedure for printed circuit boards,” IEE Trans. Circuits Syst., CAS-26, vol. 6, 1979, pp.377-388.
    38. Ramakrishna, K., Thomas, T.R., Lee, T.Y.T., Trent, J.R., and Hause, J.V., “Thermal performance of an air-cooled plastic ball grid array package in natural and forced convection,” in IEEE InterSociety Conf. on Thermal Phenomena, 1998, pp. 27-34.
    39. Ridsdale, G., Joiner, B., Bigler, J. and Torres, V. M., “Thermal simulation to analyze design features of plastic quad flat package,” J. Microcirc. Electron. Packag., vol. 19, 1996, pp. 103–109.
    40. Sallam, A.A., Desouky, M. and Desouky, H., “Evaluation of optimal-reliability indices for electrical distribution systems,” IEEE Trans. on Reliability, vol. 39, no. 3, Aug., 1990, pp. 259-264.
    41. Shao, J. and Chen, R. M. M., “MCM interconnect design using two-pole approximation,”in Proc. Design, Automation and Test in Europe, 1998, pp. 544-548.
    42. Snyder, D.W., “Thermal analysis and modeling of a copper-ployimide thin-film-on-silicon multichip module packaging technology,” in Proc. IEEE SEMI-TERMTM Symposium, 1992, pp. 101-109.
    43. Tang, M., and Yao, X., “A mimetic algorithm for VLSI floorplanning,” IEEE Trans. on Systems, Man and Cybernetics-part B: Cybernetics, vol. 37, no. 1, Feb., 2007, pp. 62-69.
    44. Tsai, W. K., Antonio, J. K. and Huang, G. M., “Complexity of gradient projection method for optimal routing in data networks,” IEEE/ACM Trans. on Networking, vol. 7, no. 6, Dec., 1999, pp. 897-905.
    45. Yang, R. and Li, H.F., “Experiment study of heat transfer for high density electronic multichip array transient heat transfer method with thermochromic liquid crystal,” in Proc. the 26th National Conf. of Theoretical and Applied Mechanics, 2002, pp.1-12.
    46. Yim, J. S. and Kyung, C. M., “Datapath layout optimitsation using genetic algorithm and simulated annealing,” IEEE Proc. Comput. Digit. Tech., vol. 145, no. 2, March, 1998, pp. 135-141.
    47. Yeung, L. H. W. and Tang W. K. S., “A hybrid genetic approach for container loading in logistics industry,” IEEE Trans. on Industrial Electronics, vol. 52, no. 2, April, 2005, pp. 617-627.
    48. Zahn, B.A., “Steady state thermal characterization of multiple output device using linear superposition theory and a non-linear matrix multiplier,” in Proc. of 14th IEEE SEMI-THERMTM symposium, 1998, pp. 39-46.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE