研究生: |
翁慈敏 Weng, Tzu-Min |
---|---|
論文名稱: |
角解析光電子能譜研究銦薄膜在平坦以及斜切2.7°的鍺(100)上之電子結構以及費米面 Studies of Band structures and Fermi Surfaces of In/Ge(100) and In/Ge(100)-[011]2.7° by angle-resolved photoemission spectroscopy |
指導教授: |
唐述中
Tang, Shu-Jung |
口試委員: |
鄭弘泰
Jeng, Horng-Tay 鄭澄懋 Cheng, Cheng-Maw |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 鍺 、銦 、費米面 、角解析電子能譜 、能帶結構 、低能量電子繞射儀 、鄰位面 、國家同步輻射中心 |
外文關鍵詞: | Germanium, Indium, Fermi surface, angle-resolved photoemission spectroscopy, band structure, LEED, vicinal surface, NSRRC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用角解析光電子能譜(ARPES)成功的測量了銦薄膜(〜0.4 ML)在平坦鍺(100)面和在鍺(100)鄰位面(沿[011]方向呈2.7°角)的2×2結構中的電子結構。我們發現在費米能量附近形成了表面態,並認為在兩個系統中的表面態可以歸因於銦價電子和鍺懸鍵之間的交互作用。我們利用第一原理計算來模擬In/Ge(100)-(2×2)結構,並研究了兩種不同的模型:(i) 銦二聚體平行於鍺二聚體的模型,以及 (ii) 銦二聚體正交於鍺二聚體的模型。其中,以銦二聚體平行於鍺二聚體的模型計算結果是比較符合我們的ARPES實驗結果。在二維等能量面中,我們發現有趣的情形:費米面拓撲結構的電子表面態,似乎因為銦薄膜在平坦鍺(100)面和在鍺(100)鄰位面上而有所不同;而比較In/Ge(100)和In/Ge(100)- [011] 2.7°的能帶寬、kF和表面態的電子密度後也非常地符合這一發現。
By using angle-resolved photoemission spectroscopy (ARPES), we measured successfully the electronic structure of low coverage (2×2) phases of indium thin films (~0.4ML) on flat Ge(100) surface and vicinal Ge(100) surface. We found several surface states crossing the Fermi level. We think in both systems surface states can be attributed to the hybridization between indium valence electrons and Germanium dangling bonds. The electronic structures of In/Ge(100)-(2×2) was simulated by first-principles calculation. Two different models have been investigated: the indium ad-dimers (i) parallel and (ii) orthogonal to the substrate Ge dimmers. To compare with measured results, the calculation based on In ad-dimers parallel to the Ge dimmers model is consistent with our ARPES result. By inspecting the 2D constant energy contours at Fermi level, we found interesting Fermi surface topology, the electron-like surface state bands seems different between indium deposited flat Ge(100) surface and indium deposited vicinal Ge(100) surface. The estimation of band width, kF, and electron density of surface states in In/Ge(100) and in In/Ge(100)- [011] 2.7° also agree with this discovery very well.
[1] Toru Hirahara, Surface transport and photoemission spectroscopy of free electron like surface states, Master thesis, University of Tokyo (2004)
[2] V.G. Lifshits, A.A. Saranin, and A.V. Zotov, Surface phase on silicon, Wiley, 1994
[3] Iwao Matsuda, Toru Hirahara, Mitsuru Konishi, Canhua Liu, Harumo Morikawa, Marie D’angelo, and Shuji Hasegawa, Phys. Rev. B 71, 235315 (2005)
[4] Iwao Matsuda, Toru Hirahara, and Hang Woong Yeom, Phys. Rev. B 65, 085327 (2002)
[5] Iwao Matsuda, Canhua Liu, Toru Hirahara, Masashi Ueno, Takehiro Tanikawa, Taizo Kanagawa, Rei Hobara, Shiro Yamazaki, and Shuji Hasegawa, Phys. Rev. Lett. 99, 146805 (2007)
[6] J.kraft, M.G. Ramsey, and F.P. Netzer, Phys. Rev. B 55, 5384 (1997)
[7] T. Abukawa, M. Sasaki, F. Hisamatsu, T. Goto, T. Kinoshita, A. Kakizaki, and S. Kono, Surf. Sci. 325, 33 (1995)
[8] H.W. Yeom, K. Horikoshi, H. M. Zhang, K. Ono, and R. I. G. Uhrberg, Phys. Rev. B 65, 241307 (2002)
[9] J. R. Ahn, J. H. Byun, H. Koh, E. Rotenberg, S. D. Kevan, and H.W. Yeom, Phys. Rev. Lett. 93, 106401 (2004)
[10] H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).
[11] E. Rotenberg, H. Koh, K. Rossnagel, H. W. Yeom, J. Schäfer, B. Krenzer, M. P. Rocha, and S.D. Kevan, Phys. Rev. Lett. 91, 246404 (2003).
[12] S. Meyer, J. Schäfer, C. Blumentein, P. Höpfner, A. Bostwick, J. L. McChesney, E. Rotenberg, and R. Claessen, Phys. Rev. B 83, 121411 (2011)
[13] Kan Nakatsuji, Yuya Motomura, Ryota Niikura, and Fumio Komori, Phys. Rev. B 84, 115411 (2011)
[14] N.W. Ashcroft, D. N. Mermin. G. Ertl, and J. Küppers, Solid State Physics, Saunders College Publishing (1976)
[15] Hans Lüth, Surface and interface of solids Materials, 3rd edition, Springer.
[16] H.Hertz, Ann. Physik 31, 983 (1887)
[17] J. J. Thompson, Phil. Mag. 48, 547 (1899)
[18] A. Einstein, Ann. Physik 17, 132 (1905)
[19] C. N. Berglund and W. E. Spicer, Phys. Rev. A 136, 1036 (1964)
[20] Stefan Hüfner, Photoelectron Spectroscopy, Springer
[21] J. Osterwalder, Surface Review and Letters 4, 391 (1997)
[22] M. Hoesch, T. Greber, V. N. Petrov, M. Muntwiler, M. Hengsberger, Journal of Electron Spectroscopy and Related Phenomena 124, 263 (2002)
[23] G. Ertl, J. K¨uppers, Low Energy Electrons and Surface Chemistry, VCH,
Weinheim (1985)
[24] Dominic. A. Ricci, Photoemission Studies of Interface Effects on Thin Film Properties, Ph.D. thesism, University of Illinois at Urbana-Champaign (2006)
[25] Y. F. Song, J.-Y. Yuh, Y.-Y. Lee, S. C. Chung, L. R. Huang, K.-D. Tsuei, S. Y. Perng, T. F. Lin, H. S. Fung, C.-I. Ma, C. T. Chen, and K. L. Tsang, Review of Scientific Instruments 77, 085102 (2006)
[26] D . J . Wang, C . C . Chiu, and C . M . Cheng, Diamond Light Source Proceedings 1, e9, 1 (2010)
[27] http://www.nsrrc.org.tw/english/lightsource.aspx , NSRRC
[28] User Manual SCIENTA R3000, VG SCIENTA
[29] Mary Hope Upton, Photoemission Studies of The electronic structures and
Properties of Thin Lead Films, Ph.D. thesism, University of Illinois at Urbana-
Champaign (2005)
[30] S. D. Kevan, Phys. Rev. B 32, 2344 (1985)
[31] D. H. Rich, T. Miller, and T. C. Chiang, Phys. Rev. B 41, 3004 (1990)
[32] L. Seehofer, G. Falkenberg, and R.L. Johnson, Surf. Sci. 352-354, 425 (1996)
[33] G. Falkenberg, L. Seehofer, and R.L. Johnson, Surf. Sci. 371, 86 (1997)
[34] Erik Landemark, C. J. Karlsson, L. S. O. Johansson, and R. I. G. Uhrberg, Phys. Rev. B 49, 16523 (1994)
[35] David V. Froelich, Marshall A. Bowen, and John D. Dow, J. Vac. Sci. Technol. B 2, 390 (1984)
[36] G. Falkenberg, O. Bunk, and R. L. Johnson, Phys. Rev. B 66, 035305 (2002)
[37] G. Krausch, T. Detzel, H. Bielefeldt, R. Fink, B. Luckscheiter, R. Platzer, U. Wöhrmann, and G. Schatz, Appl. Phys. A 53, 324 (1991)
[38] Noboru Takeuchi, Phys. Rev. B 61, 9925 (2000)
[39] M. Çakmak, G. P. Srivastava, Surf. Sci. 566-568, 931 (2004)
[40] C. Tegenkamp, J. Wollschläger, H. Pfnür, F. J. Meyer zu Heringdorf, and M. Horn-von Hoegen, Phys. Rev. B 65, 235316 (2002)
[41] C. Tegenkamp, and H. Pfnür, Surf. Sci. 574, 205 (2005)
[42] B. A. G. Kersten, L. Sjerps-Koomen, J. W. Zandvlit, and D. H. A. Blank, in Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy, edited by M. Sarikaya, H. K. Wickramsinghe, and M. Issacson, Mat. Res. Soc. Symp. Proc. 332, 555 (1994)
[43] B. A. G. Kersten, Ph. D. thesis, University of Tewente, 1995
[44] A. Laracuente, and L. J. Whitman, Surf. Sci. 476, L247 (2001)
[45] H. J. W. Zandvliet, Physics Reports 388, 1 (2003)
[46] Bart A. G. Kersten, Linda Sjerps-Koomen, Harold J. W. Zandvlit, and Dave H. A. Blank, Mat. Res. Soc. Symp. Proc. 332, 555 (1994)
[47] Bart A. G. Kersten, Harold J. W. Zandvlit, Dave H. A. Blank, and A. Van Silfhout, Surf. Sci. 322, 1 (1995)
[48] S. Rousset, J.M. Berroir, V. Repain, Y. Garreau, V. H. Etgens, J. Lecoeur, and R. Pinchaux, Surf. Sci. 443, 265 (1999)