研究生: |
林勵 Lin, LI |
---|---|
論文名稱: |
以數值方法探討相變化材料封裝形狀對鋰離子電池自然對流散熱之影響 Geometry effect of PCM container on the thermal management of lithium-ion batteries: Numerical investigation |
指導教授: |
林洸銓
Lin, Kuang C. |
口試委員: |
許智能
Hsu, Chih-Neng 廖川傑 Liao, Chuan-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 鋰離子電池 、電池熱管理系統 、數值模擬 |
外文關鍵詞: | lithium-ion battery, battery thermal management system (BTMS), numerical simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池的安全性和性能高度取決於有效的熱管理。本研究透過 ANSYS Fluent 對相變材料 (PCM) 的被動冷卻進行研究,評估自然對流下的三種幾何結構,圓形、方形和六邊形。同時透過實驗數據驗證了充放電循環發熱模型,結果顯示最糟情況下的熱分析具高度相關性和可靠性。在數值模擬的結果中,PCM-自然對流混和式冷卻能夠在不同環境條件及電流負載下有效地穩定電池溫度。PCM幾何形狀對於體積平均的電池溫度作用甚小,但其結果足以影響局部溫度分布及PCM的融化行為,而方形幾何形狀可提供更均勻的冷卻。當空隙率從 0.55 變為 0.44可使PCM之液相分率增加達 6.3% 同時僅導致電池溫度微幅上升(≤0.82°C)並略為改善熱分布的均勻性。PCM 還能降低高環境條件下的溫升,將峰值溫度保持在 47°C 以下,甚至在不熔化的情況下也能將電池溫度降低多達 3.3°C。
The safety and performance of lithium-ion batteries depend heavily on effective thermal management. This study numerically investigates passive cooling using phase change materials (PCMs) under natural convection, evaluating three PCM geometries—circular, square, and hexagonal—via ANSYS Fluent. A discharge-charge cycle heat generation model was validated against experimental data, demonstrating strong reliability for thermal analysis in high-stress conditions. Simulation results confirm that PCM-natural convection hybrid cooling effectively stabilizes battery temperatures under varying ambient conditions and load profiles. PCM geometry has minimal influence on volume-averaged cell temperature but affects local temperature distribution and melting behavior, with square geometry offering more uniform cooling. Reducing void fraction from 0.55 to 0.44 increases PCM melt by up to 6.3% but causes only a modest rise in cell temperature (≤0.82 °C) while slightly improving thermal uniformity. PCM also reduces temperature rise under high ambient conditions, keeping peak temperatures below 47 °C and lowering cell temperature by up to 3.3 °C even without melting.
1. Rao, Z. and S. Wang, A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4554-4571.
2. Park, S.H., et al., Sensitivity of power of lithium-ion batteries to temperature: A case study using cylindrical- and pouch-type cells. Journal of Power Sources, 2020. 465: p. 228238.
3. Li, Z., et al., Phase change materials for lithium-ion battery thermal management systems: A review. Journal of Energy Storage, 2024. 80: p. 110259.
4. Yang, H., et al., Review on the Lithium-Ion Battery Thermal Management System Based on Composite Phase Change Materials: Progress and Outlook. Energy & Fuels, 2024. 38(4): p. 2573-2600.
5. Ma, S., et al., Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 2018. 28(6): p. 653-666.
6. Akinlabi, A.A.H. and D. Solyali, Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 2020. 125: p. 109815.
7. Liu, H., et al., Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 2017. 150: p. 304-330.
8. Leng, F., C.M. Tan, and M. Pecht, Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci Rep, 2015. 5: p. 12967.
9. Elmaazouzi, Z., et al., A comparative analysis of the performance of LHTES systems-case study: Cylindrical exchanger with and without annular fins. AIP Conference Proceedings, 2019. 2123(1): p. 020073.
10. Shen, Z.-G., et al., A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2021. 148: p. 111301.
11. Altuntop, E.S., et al., A comprehensive review on battery thermal management system for better guidance and operation. Energy Storage, 2023: p. e501.
12. Khan, M.M., et al., Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges. Journal of Energy Storage, 2023. 73: p. 108775.
13. Liu, X., et al., Numerical simulation of hybrid battery thermal management system combining of thermoelectric cooler and phase change material. Energy Reports, 2022. 8: p. 1094-1102.
14. Luo, J., et al., Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 2022. 430: p. 132741.
15. Lyu, Y., et al., Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 2019. 5: p. 822-827.
16. Hallaj, S.A. and J.R. Selman, A Novel Thermal Management System for Electric Vehicle Batteries Using Phase‐Change Material. Journal of The Electrochemical Society, 2000. 147(9): p. 3231.
17. Aina, R., D. Ionut, and D. Luminita, Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting. International Journal of Heat and Fluid Flow, 2019. 76: p. 57-71.
18. Bahiraei, F., A. Fartaj, and G.-A. Nazri, Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Conversion and Management, 2017. 153: p. 115-128.
19. Huang, R., et al., Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management. Energy Reports, 2020. 6: p. 8-19.
20. Peng, P., Y. Wang, and F. Jiang, Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Applied Thermal Engineering, 2022. 209.
21. Sharma, D.K., P. Agarwal, and A. Prabhakar, Effect of fin design and continuous cycling on thermal performance of PCM-HP hybrid BTMS for high ambient temperature applications. Journal of Energy Storage, 2023. 74: p. 109360.
22. Mohamed Moussa, E.I., K. Mustapha, and A.T. Mahamadou, A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations. International Journal of Heat and Mass Transfer, 2021. 169: p. 120894.
23. Mei, W., et al., Numerical study on thermal characteristics comparison between charge and discharge process for lithium ion battery. International Journal of Heat and Mass Transfer, 2020. 162: p. 120319.
24. Hong, J.S., et al., Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells. Journal of The Electrochemical Society, 1998. 145(5): p. 1489.
25. Ye, Y., et al., Electro-thermal modeling and experimental validation for lithium ion battery. Journal of Power Sources, 2012. 199: p. 227-238.
26. Safdari, M., R. Ahmadi, and S. Sadeghzadeh, Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy, 2020. 193: p. 116840.
27. Khan, M.N., et al., Air cooled lithium-ion battery with cylindrical cell in phase change material filled cavity of different shapes. Journal of Energy Storage, 2022. 50: p. 104573.
28. Yang, Y., et al., Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles. International Journal of Thermal Sciences, 2021. 165: p. 106968.
29. Kurşun, B., et al., The effect of outer container geometry on the thermal management of lithium-ion batteries with a combination of phase change material and metal foam. Journal of Energy Storage, 2024. 80: p. 110227.
30. Tang, K.A., Simulation of the PCM encapsulation effect on natural convection of a horizontally placed Li-ion battery using the lattice Boltzmann method, in Dept. of Engineering and System Science. 2023, National Tsing Hua University: Hsinchu, Taiwan.
31. PROMI. P series – Paraffin Wax P5348. [cited 2025 Mar. 31, 2025]; Available from: https://www.promi.com.tw/product-pcm-series-en.html.
32. Sutheesh, P.M., et al., Numerical investigations on thermal performance of PCM-based lithium-ion battery thermal management system equipped with advanced honeycomb structures. International Communications in Heat and Mass Transfer, 2024. 158: p. 107937.
33. Matsson, J.E., An introduction to ansys fluent 2023. 2023: Sdc Publications.
34. Bernardi, D., E. Pawlikowski, and J. Newman, A general energy balance for battery systems. Journal of the electrochemical society, 1985. 132(1): p. 5.
35. Chi, H.Y., Development of a Heat Feneration Model for a Lithium Battery and Its Application to Computational Fluid Dynamics, in Dept. of Engineering and System Science. 2023, National Tsing Hua University: Hsinchu, Taiwan.
36. Maroliya, M., V.C. Midhun, and S.K. Saha, Evaluation of solid-solid and solid-liquid phase change materials in pin-finned heat sinks for cooling of avionics electronics. Thermal Science and Engineering Progress, 2024. 53: p. 102781.
37. Li, W., et al., Optimisation of PCM passive cooling efficiency on lithium-ion batteries based on coupled CFD and ANN techniques. Applied Thermal Engineering, 2025. 259: p. 124874.
38. Microtek Laboratories, I. DATA SHEET PCM37. [cited 2025 Mar. 31, 2025]; Available from: https://46884634.fs1.hubspotusercontent-na1.net/hubfs/46884634/Product%20Data%20Sheets%20-%20MCL/MPDS3300-0009-Product-Data-Sheet-%E2%80%93-PCM37-Rev.-3.pdf.
39. Adil, W., et al., Phase change materials for battery thermal management of electric and hybrid vehicles: A review. Energy Nexus, 2022. 7: p. 100131.
40. Liu, F., et al., Thermal characteristics of Li-ion battery based on phase change material-aluminum plate-fin composite heat dissipation. Energy Science \& Engineering, 2023. 11(1): p. 62-78.
41. Yunus A. Cengel, A.J.G., Heat and Mass Transfer: Fundamentals and Applications. 6th ed. 2019: McGraw Hill.