簡易檢索 / 詳目顯示

研究生: 呂旼儒
Lu, Ming-Ru
論文名稱: 超導共振腔體中央直線段長度對電磁場特性之影響
Length Effect of Central Straight Section on the Electromagnetic Characteristics of Superconducting Radio-frequency Cavity
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 林明泉
Lin, Ming-Chyuan
陳文華
Chen, Wen-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 57
中文關鍵詞: 超導共振腔體共振頻率表面磁場結構變形
外文關鍵詞: SRF cavity, Resonance frequency, Surface magnetic field, Structural deformation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是對超導共振腔體進行結構變形與高頻電磁場分析,根據不同模擬方式得到之結果進行探討。使用商用有限單元分析軟體ANSYS建立超導共振腔之模型來進行分析,由於分析時所需之基頻共振模態為TM010之軸對稱形式,所以只建立結構之四分之一模型,搭配適當之邊界條件並設定單元之相關電磁常數即可代表全模型之模擬結果。於使用HF120單元進行模擬時,討論選擇此單元之一階或是二階模式對超導共振腔體之高頻電磁場分析結果造成之影響,分別就共振頻率之收斂性與腔體表面磁場之分布進行探討。文中進行實驗驗證,實驗時使用之腔體以銅製作,分別探討實驗腔體受到軸向位移、溫度變化、軸向負載、外部壓力差時腔體之共振頻率變化量是否與模擬相等。文中也將討論改變腔體中心直線段長度對於腔體共振頻率之影響,並分別討論腔體未變形時與腔體受到內外壓力差產生之結構變形與受到溫度變化時之共振頻率之改變 。


    This study investigates the structure deformation and high-frequency electromagnetic characteristics of a superconducting radio frequency (SRF) cavity. The numerical model is established by the commercial finite element software ANSYS. Since the fundamental resonance mode of this SRF cavity is axially symmetric, called the TM010 mode, one quarter of the full structure with proper boundary conditions is modeled. Two options of HF120 element, the first order and the second order elements are used to investigate the difference and it is concluded that second-order options shall be adopted for this study. The simulation results are verified with experimental tests on a copper cavity. The resonance frequency drifts of this cavity under various situations, such as axial displacements, temperature change, axial loading and external pressure are all measured to compare with the simulation results. The effects of length of the central straight section on deformation and resonance frequency of the 1.5 GHz cavity are also evaluated.

    摘要……………. i Abstract ii 誌謝 iii 目錄 iv 圖表目錄 vi 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 5 第二章 超導共振腔電磁場理論分析 6 2.1 電磁場理論分析 6 第三章 有限單元模型分析 10 3.1 超導共振腔幾何模型建立 10 3.2 單元選取 11 3.3 規則化網格建立 12 3.4 腔體參數定義 13 3.5 邊界條件設定 13 3.6 分析單元基本理論 14 3.6.1超導共振腔腔體結構 14 3.6.2腔體內之電磁場特性 15 第四章 實驗 18 4.1 實驗設備 18 4.2 軸向位移造成之共振頻率變化實驗 19 4.3 溫度變化造成之共振頻率變化實驗 19 4.4 軸向負載造成之共振頻率變化實驗 20 4.5 外壓差造成之共振頻率變化實驗 20 第五章 結果與討論 22 5.1 電磁場共振頻率特性 22 5.2 實驗結果與模擬之比較 23 5.2.1 軸向位移造成之共振頻率變化 24 5.2.2 溫度變化造成之共振頻率變化 24 5.2.3 軸向負載造成之共振頻率變化 25 5.2.4 外部壓差造成之共振頻率變化 25 5.3中央直線段長度改變對內部電磁場性之影響 25 5.4腔體薄殼結構變形分析 26 5.4.1內外一大氣壓壓力差 26 5.4.2不同中央直線段長度及不同厚度 26 5.4.3不同中央直線段長度腔體受溫度之影響 28 第六章 結論 29 參考文獻 31 圖表目錄 表3.1全域分析模型與簡化分析模型之共振模態計算結果 36 表3.2網格-共振頻率之收斂測試之結果 36 表5.1超導共振腔腔體受到溫度變化造成之共振頻率變化之實驗與模擬結果 37 表5.2兩種邊界條件對於不同中央直線段長度在腔體厚度定為2mm之情形下之分析結果 37 圖2.1圓柱盒形共振腔之TM共振模態 38 圖3.1超導共振腔尺寸 38 圖3.2全分析模型 39 圖3.3 二分之一分析模型 39 圖3.4 四分之一分析模型 40 圖3.5 SHELL93單元 40 圖3.6 SOLID9與HF120單元示意圖 41 圖3.7網格-共振頻率之收斂測試結果 41 圖3.8兩對稱面施加對稱面條件,固定小圓束管端X、Y方向之自由 度,並將Z方向自由度耦合,於大圓束管端固定X,Y,Z方向之自由度 42 圖3.9兩對稱面施加對稱面條件,固定大圓束管端X、Y、Z方向之自由度,於小圓束管端固定X,Y,Z方向之自由度 42 圖4.1 超導共振腔體 43 圖4.2 網路分析儀 43 圖4.3 真空幫浦 44 圖4.4 支架 44 圖4.5 微波探針 45 圖4.6與腔體連結之蓋板 (a)上蓋板(b)下蓋板(c)銅環 45 圖4.7 螺桿連結上下蓋板 46 圖4.8 腔體外桶 46 圖4.9 數位式絕對壓力計 47 圖5.1超導共振腔體之軸向電場分布(a)為一階HF 120單元(b)為二階HF 120單元 47 圖5.2第二階之HF120單元搭配不同單元數所繪製之超導共振腔體軸心線上的軸向電場強度圖 48 圖5.3超導共振腔之表面磁場沿軸向方向分佈圖 48 圖5.4超導共振腔之表面磁場沿軸向方向分佈局部放大圖 49 圖5.5超導共振腔體之軸向磁場分布(a)一階HF 120單元磁場分布圖(b) 二階HF 120單元磁場分布圖 49 圖5.6腔體受到軸向位移造成之共振頻率變化之實驗與模擬圖 50 圖5.7腔體受到溫度變化造成之共振頻率變化之實驗與模擬圖 50 圖5.8腔體受到軸向負載造成之共振頻率變化之實驗與模擬圖 51 圖5.9腔體受到外部壓差造成之共振頻率變化之實驗與模擬圖 51 圖5.10中央直線段長度改變對於超導共振腔體共振基頻之影響 52 圖5.11不同中央直線段長度下超導共振腔中心區段附近之表面磁場分佈 52 圖5.12兩對稱面施加對稱面條件且腔體之大圓柱端與小圓柱端端面自由度階被固定之腔體中心變形量100倍放大圖 53 圖5.13兩對稱面施加對稱面條件且固定大圓束管端X、Y方向之自由度,並將Z方向自由度耦合,於小圓束管端固定X,Y,Z方向之自由度。兩對稱面施加對稱面條件之腔體中心變形量100倍放大圖 53 圖5.14不同厚度下中央直線段長度改變對於一大氣壓下變形後之共振頻率飄移量之影響 54 圖5.15厚度對共振頻率飄移量之影響 54 圖5.16不同中央直線段長度腔體在厚度1 mm時之徑向變形量 55 圖5.17不同中央直線段長度腔體在厚度2 mm時之徑向變形量 55 圖5.18不同中央直線段長度腔體在厚度3 mm時之徑向變形量 56 圖5.19不同中央直線段長度腔體中心在不同厚度時之徑向變形量 56 圖5.20不同中央直線段長度腔體中由室溫冷卻至液態氮溫度時之共振頻率變化 57 圖5.21不同中央直線段長度腔體中由室溫冷卻至液態氮溫度時之分析結果 57

    1. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir and H.C. Pollock, “Radiation from Electrons in a Synchrotron,” Physical Review, Vol. 71, pp. 829-830, 1947.
    2. N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ruhr-Universitat Bochum Bochum, Germany, 2008.
    3. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No.46, pp. 14-19, 2000。
    4. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
    5. V. D. Shemeliny , G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012
    6. M. Meidlinger, T.L. Grimm, W. Hartung, “Design of Half-reentrant SRF cavities,” Physica C, Vol. 441, pp. 155–158, 2006.
    7. T. Furuya, K. Akai, K. Asano, E. Ezura, K. Hara, et al., “A Prototype Module of a Superconducting damped cavity for KEKB,” Proc. EPAC96, 1996, pp. 2121-2123.
    8. H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q.S. Shu, and M. Tigner, “Design Challenges for High-current Storage rings,” Part. Accel. Vol. 40, 1992, pp. 17-41.
    9. R. Valdiviez, D. Schrage, F. Martinez, W. Clark,” The Use of Dispersion Strengthened Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000.
    10. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, New York: Wiley, 1998.
    11. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of Superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
    12. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Report SRF 010717-05, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 2001.
    13. S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Report SRF 990407-03, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
    14. E. Chojmacki and J. Sears, “Superconducting RF Cavities and Cryogenics for the CESR III upgrade,” Report SRF 990716-09, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
    15. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, Wiley Interscience, New York, 2000.
    16. M.G. Rao and P. Kneisel, “Thermal and Mechanical Properties of Electron Beam Welded and Heated-treated Niobium for Tesla,” Continuous Electron Beam Accelerator Facility Newport News﹐pp. 1-7, 1993.
    17. M.G. Rao and P. Kneisel, “High RRR Material Properties of Niobium and Specifications for Fabrication of Superconducting Cavities,” Fermilab, TD-06-048, 2006.
    18. M.F. Thomas, Cryogenic Engineering, Marcel Dekker Inc﹐pp. 181-214, 1997.
    19. K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture Toughness and Mechanical Properties of Pure Niobium and its Welded Joints of Superconducting Cavity at 4K,” 9th Workshop on RF Superconductivity, 1999.
    20. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
    21. T. S. Byun, S. H. Kim, J. Mammosser, “Low-temperature Mechanical Properties of Superconducting Radio Frequency Cavity Materials,” Journal of Nuclear Materials, Vol. 392, pp. 420–426, 2009.
    22. R.P. Walsh, R.R. Mitchell, V.T. Toplosky and R.C. GentZlinger, “Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Materials,” 9 th Workshop on RF- Superconductivity, 1999.
    23. J. Knobloch, W. Hartung, and H. Padamsee, “Enhanced Susceptibility of Nb Cavity Equator Welds to the Hydrogen Related Q-virus,” Report SRF 981012-12, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
    24. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
    25. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K.M. Schirm, M. Taufer and W. Weingarten, “Analysis and Results of the Industrial Production of the Superconducting Nb/Cu Cavities for the LEP 2 Project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
    26. G. Myneni, P. Kneisel, “High RRR Niobium Material Studies,” JLAB-TN-02-01
    27. H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report of SRF 980612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
    28. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
    29. J. Kirchgessner, “The Use of Super Conducting RF for High Current Applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
    30. J. Mammosser, P. Kneisel and J.F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” The Institute of Electrical and Electronics Engineers, pp. 947-949, 1993.
    31. Y.C. Tsai, “Studies of High-order-mode Suppression in Storage Ring RF Cavities,” Ph.D. Dissertation, National Tsing Hua University, 1997.
    32. 陳家逸, “高頻共振腔高次模抑制方法之研究,” 國立清華大學碩士論文, 2003.
    33. G. H. Luo, L. H. Chang, C.C. Kuo, M. C. Lin, R. sah, T.T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500 mA Beam current Upgrade Project at Taiwan Light Source,” Proceeding of European Particle Accelerator Conference, pp. 654-656, Vinena, Austria, 2000.
    34. J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat, ” Report SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1994.
    35. 陳伯毅, “低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003.
    36. 鍾明忠, “共振腔結構受端面位移影響之模態分析與實驗,” 國立清華大學碩士論文, 2004.
    37. E. Zaplatin, C. Compton, W. Hartung, M. J. Johnson, F. Marti, J. Oliva, J. Popielarski, and R. C. York, “Strucural Analyses of MSU Quarter-waver Resonators,” Proc. SRF2009, 2009, pp. 560-563.
    38. E. Zaplatin, “FZJ SC Cavity Coupled Analyses,” Proc. of the 12th Workshop on RF Superconductivity, 2005 , pp. 342-346.
    39. 高福聲, “低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學碩士論文, 2002.
    40. M.C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, “A Coupled-field Analysis on RF Cavity,” Particle Accelerator Conference, Chicago, U.S.A., 2001.
    41. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cavity,” Proceedings of EPAC, Paris, pp.2259-2261, 2002.
    42. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, “Effect of Material Properties on Resonance Frequency of CESR-III Type 500 MHz SRF Cavity,” Proceedings of the 2001 Particle Acceleration Conference, PP.1371-1374, 2004.
    43. 郭泓毅, “超導共振腔之結構變形對內部電磁場特性之影響,” 國立清華大學碩士論文, 2013.
    44. D. K. Cheng, Field and wave electromagnetic, Addison Wesley, New York, 1989.
    45. A. V. Kudrin and E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium : Exact solutions of the Maxwell equations,” JEPT, 110, pp.537-548, March 2010.
    46. 鄭傑仁, “由共振腔內部電磁場特性推算腔體材料的機械性質,” 國立清華大學碩士論文, 2005.
    47. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
    48. 王皓宇, “在外力負載下圓柱形金屬共振腔之高頻電磁場共振頻率與機械材料特性之相關性研究,”國立清華大學碩士論文, 2011.
    49. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    50. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE