簡易檢索 / 詳目顯示

研究生: 李聰
SHILPA SIVASHANKAR
論文名稱: Microfluidic Bioreactors for Long-Term Culture and Histopathological Studies of Transgenic Mice Liver Tissue
肝組織長期培養之微流控生物反應器研發
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 盧向成
Lu, Shiang-Cheng
葉昭廷
Yeh, Chau-Ting
彭慧玲
Peng, Hwei-Lin
張晃猷
Chang, Hwan-You
劉承賢
Liu, Cheng-Hsien
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 154
中文關鍵詞: 肝組織生物反應器基因轉殖老鼠蘇木精&曙紅
外文關鍵詞: liver tissue, bioreactor, transgenic mice, hematoxylin &eosin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nurturing thick liver tissue for long-term allowing regeneration within 3D environment with perfusion system to improve clinical predictivity of preclinical testing is described in this thesis. At first, we have tried to prolong the culture period of primary tissue sample >2mm that were well supported on 3D microfluidic architecture or scaffold thereby aiding tissue samples to meet high oxygen demands of liver tissue mimicking 3D microenvironment present in vivo. Secondly to promote regeneration in tissue section we have added growth factors like hepatocyte growth factor (HGF) and insulin-like growth factor (IGF) and were successful in culturing tissue that could survive for at least 16 days allowing one round of ex vivo regeneration.. In order to supply the tissues with in vivo microenvironment there is a need for pumping system, reservoirs; microfluidic structures/hydrogels with appropriate porosity to meet the oxygen demand. The bioreactor comprised of microstructures or hydrogels that were bio-compatible to support the tissue and minimize the shear stress that was caused due to medium perfusion at high flow rates to meet the oxygen demand. The bioreactor comprises of a pumping device, supporting device, breathers, and reservoirs to meet the essential requirements of the tissue sample. Initiation of hepatocyte proliferation
    ii
    was observed in the ex vivo liver tissues between the eighth and twelfth days,
    which could be demonstrated by proliferating cell nuclear antigen (PCNA)
    staining. Furthermore we tried to observe the decrease in viable cells after 16days
    and found that cells were adopting extrinsic apoptotic mechanism for cell death
    when stained with different antibodies for intrinsic and extrinsic apoptosis. Once
    we found that there could be possibility of regeneration, we wanted to optimize the
    growth factor concentration and test with a drug Sorafenib which would be
    effective when combined with another drug or the growth factor. Therefore we
    have utilized a multi layered device enabling two different functions
    (encapsulation and gradient generation) on the same chip. Here we determined the
    efficacy of combined Sorafenib and HGF treatment against hepatoma
    tumorogenesis and progression using the transgenic mice model as a pilot study.
    The long-term culture and re-growth of cells within the primary liver tissue
    samples provided a promising model to study liver pathophysiology or to develop
    an efficient, safer and effective drug filling the gap between in vivo and cell culture
    models. The development of these in vitro cell and tissue culture models can
    contribute substantially to the reduction, refinement, and possibly to the
    replacement of animal experiments. The efficacy and tolerability of combined
    Sorafenib and HGF may provide rationale to use in treatment of HCC models.


    Abstract………………………………………………………...…………………..i Acknowledgements................................................................................................. iii Abbreviations ........................................................................................................... v Contents .................................................................................................................. vi List of Figures ......................................................................................................... xi List of tables ............................................................................................................xv Chapter 1: Introduction .......................................................................................... 1 1.1 Background ...................................................................................................... 1 1.2 Tissue engineering ........................................................................................... 1 1.3 Problems faced in liver tissue engineering ..................................................... 5 1.4 Tissue engineering techniques ..................................................................... 5 1.4.1 Static/dynamic liver tissue culture technique ......................................... 6 1.4.2 Perfusion liver tissue culture technique .................................................. 9 1.4.3 2D liver tissue constructs technique .....................................................11 1.4.4 3D liver tissue constructs technique .....................................................13 1.4.5 Scaffold for liver tissue engineering .....................................................16 1.4.6 Microscale technologies for liver tissue engineering ...........................19 1.5 Comprehensive analysis of bio-artificial livers (BAL’S) ..........................22 1.5.1 Tissue engineered constructs ................................................................23 1.5.2 Cell Seeded BAL Systems ....................................................................24 vii 1.5.3 Membrane incorporated micro-bioreactors ..........................................25 1.6 How Liver Biopsies are Evaluated? .................................................26 1.7 Introduction to bioreactor cultures ............................................................27 1.7.1 Cell seeded bioreactors .......................................................................28 1.7.2 Tissue inserted bioreactors ...................................................................29 1.7.3 Scaffold bioreactor ...............................................................................30 1.7.4 Engineered constructs ..........................................................................31 1.8 Current therapies for liver diseases ...........................................................32 1.9 Aims and scope of this thesis .....................................................................34 Chapter 2: Theory and Design ............................................................................36 2. 1 Liver structure ..........................................................................................36 2.1.2 The Hepatic Vascular System ..............................................................38 2.1.3 The Biliary System ................................................................................38 2.2 Mechanism involved: perfusion flow and microfluidic structures ..........42 2.3 Design of the microfluidic bioreactor ........................................................42 2.4 Working principle of the bioreactor ..........................................................43 2.5 Repair and regeneration ............................................................................45 2.6 Tissue proliferative activity ........................................................................47 2.7 Liver regeneration and apoptosis mechanism...........................................50 2.8 Study of histopathology with growth factors .............................................53 2.9 Sorafenib functions ....................................................................................58 viii Chapter 3: Experimental Methods ..............................................................60 3.1 Preparation of PEG-DA structures ...........................................................60 3.2 Maskless lithography for fabrication of PEG-DA structures ...................61 3.3 Cell culture and medium ............................................................................62 3.4 Tissue preparation for perfusion culture ..................................................63 3.5 Surface modification for attachment of PEG-DA structures ...................64 3.6 Experimental setup for perfusion of liver tissues .....................................65 3.7 Histopathological investigation and apoptosis assessment of tissue ........65 3.7.1 HBsAg expression .................................................................................65 3.7.2 H&E assay .............................................................................................66 3.7.3 TUNEL assay ........................................................................................66 3.8 Construction of flow perfusion bioreactor ................................................66 3.9 Microfabrication of PDMS structures .......................................................67 3.10 Surface modification for enhancing the cell-to-substrate adhesion and establishing extracellular matrix .........................................................................68 3.11 Fabrication of the microfluidic chip .........................................................69 3.12 Medium preparation ...................................................................................70 3.13 Tissue Degradation Procedure ..................................................................71 Chapter 4: Experimental Results and Discussion...............................................73 ix 4.1 The parameter set for tissue culture ..........................................................73 4.2 Characterization of PEG-DA structures ...................................................74 4.2.1 Stability retention of PEG-DA microstructures ....................................74 4.2.2 Characterization of swelling behaviors ................................................75 4.3 Assessment of antigen expression in tissue ...............................................77 4.4 Histo-architecture assessment of cultured liver tissue .............................79 4.5 Viability assessment via quantifying apoptotic cells in liver tissue ..........82 4.6 Suitability of the bioreactor ........................................................................85 4.6.1 Liver tissue structure characterization by histology .......................87 4.6.2 Viability quantification assay using TUNEL ........................................89 4.6.3 Urea quantification assay ......................................................................92 4.6.4 PCNA staining assay .............................................................................93 4.7 Tissue culture allowing one round of ex vivo regeneration…………….94 4.8 Cell death mechanism involved .................................................................95 4.8.1. Intrinsic- mitochondrial mediated apoptosis ...........................................96 4.8.2. Extrinsic- activator mediated apoptosis ...................................................97 4.8.1.1. Staining for BCL complexes ..................................................... 99 4.8.1.2. Staining for P53: ................................................................... 100 4.8.2.1. Staining for FAS protein ........................................................ 102 4.8.2.2. Staining for FADD protein ..................................................... 103 4.9 Viability via trypan blue assay .................................................................106 4.9.1 Cytochrome p450 1A1 subfamily enzyme activity ............................107 x 4.9.2 LDH cytotoxicity assay .......................................................................108 4.9.3 Urea secreted by liver tissue ...............................................................110 4.10 Histoachitecture of liver tissues ...............................................................111 4.10.1 Hematoxylin & Eosin ...........................................................................111 4.10.2 TUNEL assay .....................................................................................113 4.11 Gradient generation..................................................................................114 4.12 Adjuvant Therapy Drug-Sorafenib .......................................................118 4.12.1 H&E .........................................................................................................120 4.12.2 TUNEL .....................................................................................................120 Chapter 5: Conclusions ..........................................................................................129 5.1 Trends in liver tissue engineering............................................................130 5.1.1 Human Ectopic Artificial Livers (HEALS) ........................................130 5.1.2 Scientists grow human liver in a laboratory .......................................133 5.1.3 Simulation of regenerative phenomena in liver ..................................134 5.2 Future work ..............................................................................................136 Towards BrDU incorporation ...........................................................................136 References ............................................................................................ 140 Appendix A: VITA ........................................................................... 149 Appendix B: List of Publications ........................................................ 150 xi List of Figures Chapter 1 Figure 1.1: Population affected with liver disease and its remedy……………….3 Figure 1.2: Major liver tissue engineering techniques ....................................... 6 Figure 1.3: (a) Static culture, (b) Dynamic culture: rocker platform allows the movement of the culture media ............................................................................. 7 Figure 1.4: Microfluidic device used for maintaining and probing tissue samples. …………………………………………………………………………….10 Figure 1.5: Schematic diagram showing sequence of steps in Pattern I and Pattern II co-culture. ...........................................................................................12 Figure 1.6: Development of 3D tissue engineering. ...........................................15 Figure 1.7: Fabrication of HEALs. ....................................................................19 Figure 1.8: Soft lithographic process to fabricate microscale liver hepatocyte cultures in a multiwell format. ............................................................................21 Chapter 2 Figure 2.1: Typical liver lobule structure. ..........................................................37 Figure 2.2: Structure of liver. .............................................................................41 Figure 2.3: Fabrication of our bioreactor chip and the PEG-DA microstructures.. ..................................................................................................43 Figure 2.4: Illustration, working principle and the photo picture of our bioreactor chip.. ...................................................................................................44 Figure 2.5: Static culture method. ......................................................................45 xii Figure. 2.6. Overview of healing responses after injury. ...................................46 Figure. 2.7. Role of extra cellular matrix in regeneration and repair. .............48 Figure 2.8 Repair, regeneration and fibrosis after injury and inflammation. …………………………………………………………………………….49 Figure 2.9: Illustration of the microfluidic device. ............................................55 Figure 2.10: Cartoon of gradient generation chip. ............................................56 Figure 2.11: Simulation results of the gradient generator.. ..............................57 Chapter3 Figure 3.1: Preparation for fabricating PEGDA microstructures……………….60 Figure 3.2: Fabrication of 3D PEG-DA microstructures.. ................................62 Figure 3.3: HBsAg genome organization.. .........................................................64 Figure 3.4: Fabrication of microstructures.. ......................................................67 Figure 3.5: Fabrication of PDMS microstructures.. .........................................69 Chapter 4 Figure 4.1: Stability of PEG-DA based microstructures. ..................................75 Figure 4.2: Influence of concentration of PEG-DA microstructures on EWC. …………………………………………………………………………….76 Figure 4.3: Influence of the feed ratio of (PEG-DA+PETA)/PBS on EWC of the PEG-DA hydrogels.. ......................................................................................77 Figure 4.4: HBsAg antigen expression. ..............................................................78 Figure 4.5: H&E stain representing structural morphology of liver tissue. .....82 xiii Figure 4.6: Cell viability of liver slices measured by TUNEL assay.. ...............85 Figure 4.7: Histopathological examination for the structural morphology of cultured liver tissues.. ..........................................................................................89 Figure 4.8: The changes of the percentages of apoptosis cells in liver slices measured by TUNEL assay.. ...............................................................................92 Figure 4.9 Amount of urea secreted during the culture period. ........................93 Figure 4.10: Liver tissue sections from rats were analyzed for PCNA distributions.. ........................................................................................................94 Figure 4.11: Difference between apoptosis and necrosis cell death...... ...........98 Figure 4.12: Bcl-2 staining results......................................................................99 Figure 4.13: p53 staining results.................................................................... ...102 Figure 4.14: FAS staining results. ....................................................................103 Figure 4.15 (a): FADD signaling pathway and its presence in tissue.......... ..105 Figure 4.15(b): synopsis of cell death mechanism............................................105 Figure 4.16: Viability measured using trypan blue stain.................................106 Figure 4.17: Cytochrome P4501A1 subfamily enzyme activity of cells obtained from medium treated with gradient generator ..................................................108 Figure 4.18: Metabolic activity of cells treated with medium obtained gradient generator .............................................................................................................109 Figure 4.19: Urea secreted by the tissue slices during the culture period. .....110 Figure 4.20: Histoarchitecture assessment of the tissue slice.. .......................112 Figure 4.21: TUNEL assay results....................................................................114 xiv Figure 4.22: Concentration profile of the gradient generated in our gradient generator. ............................................................................................................115 Figure 4.23: pH of the solutions measured at each outlet of the gradient generator. ............................................................................................................116 Figure 4.24: Structural integrity of tissues assessed by H&E stain. ...............121 Figure 4.25: Distribution of live and apoptotic cells. .......................................122 Figure 4.26: Growth curve to optimize the concentration of Sorafenib. ........123 Figure 4.27: Results of AKT staining ...............................................................124 Figure 4.28: Results of ERK staining ...............................................................125 Figure 4.29: Results of EGFR staining ............................................................126 Figure 4.30: Results of VEGFR staining .........................................................127 Chapter5 Figure 5.1:. Regeneration in the simulation model, starting with a representative liver lobule.. ................................................................................134 Figure 5.2: Assessment of regeneration via BrDU incorporation….. ...........137 Figure 5.3: BrDU optimization using a gradient generator…………………138 List of tables Table 1.1 Comparison with other static methods ................................................. 8 Table 1.2 Comparison with other perfusion bioreactors ....................................11 Table 1.3 Comparisons between 2D liver constructs ..........................................13 Table 1.4 Alternative approaches to 3D constructs ............................................15 Table 1.5 Comparisons between scaffold utilized constructs .............................18 Table 1.6 Compares new microscale technology approaches ............................22 Table 4.1: Difference between apoptosis and necrosis.......................................97 Table 4.2. The concentration of HGF and IGF growth factors at the outlet of the gradient generator. .......................................................................................117 Table 4.3 Concentration of sorafenib at different outlets. ...............................122 Table 4.4: Tissue stained for different antibodies ............................................127

    [1] C.G. Fraga, B.E. Leibovitz and A.L. Tappel, Free Raic. Biol. Med. 3 119- 123 (1987).
    [2] P. Olinga, K. Groen, I. H. Hof, R. De Kanter, H. J. Koster, W. R. Leeman, A. A. J. J. L. Rutten, K. Van Twillert and G. M. M. Groothuis, Journal of Pharmacological and Toxicological Methods 1997, 38, 59-69.
    [3] J. Vacanti and C.A. Vacanti. Lanza, R.; Langer, R.; Vacanti, J., Eds.; Elsevier Academic Press: Burlington, 2007; pp. 1-6.
    [4] B. Lal, J. Viola, D. Hicks and O. Grad, in: NSF, U. S. o. A. (Ed.), Virginia 2003.
    [5] J. Jagur-Grodzinski. (2006) Polymers For Advanced Technologies, 17, 395-418.
    [6] R. C. Thomson, M. C. Wake, M. J. Yaszemski and A. G. Mikos. Biodegradable polymer scaffolds to regenerate organs. In Biopolymers II. Peppas, N. A.; Langer, R. S., Eds.; Springer-Verlag GmbH & Company KG: Berlin, 1995; pp. 245-274.
    [7] El-Serag, H. B. Current concepts Hepatocellular Carcinoma. New England Journal of Medicine 365, 1118-1127
    [8] R. Langer and J. P. Vacanti. (1993) Tissue Engineering, Science, 260, 920-926. View Record in Scopus | Cited By in Scopus (3429).
    [9] M. Petreaca and M. Martins-Green. The Dynamics of Cell-ECM Interactions. In Principles of Tissue Engineering.
    [10] Peter X. Ma. (2004) Scaffolds for tissue fabrication, Materials Today, 7, 30-40.
    [11] Lanza, R.; Langer, R.; Vacanti, J., Eds.; Elsevier Academic Press: Burlington, 2007; pp. 81-99.
    [12] L. G. Griffith and G. Naughton, Science, 2002, 295, 1009-1014.
    141
    [13] G. Catapano* and J. C. Gerlach, Topics in Tissue Engineering, Vol. 3, 2007. Eds. N Ashammakhi, R Reis & E Chiellini © 2007. chapter 8.
    [14] Schumacher K, et al. (2007) Tissue Engineering 13(1):197-205.
    [15] A. E. M. Vickers, M. Saulnier, E. Cruz, M. T. Merema, K. Rose, P. Bentley and P. Olinga, Toxicological Sciences 2004, 82, 534-544.
    [16] S. M. Hattersley, C. E. Dyer, J. Greenman and S. J. Haswell, Lab on a Chip 2008, 8, 1842-1846.
    [17] B. J. Kane, M. J. Zinner, M. L. Yarmush and M. Toner, Analytical Chemistry 2006, 78, 4291-4298.
    [18] K. Domansky, W. Inman, J. Serdy, A. Dash, M. H. M. Lim and L. G. Griffith, Lab on a Chip 2010, 10, 51-58.
    [19] K. Irani, I. Pomerantseva, A. R. Hart, C. A. Sundback, C. M. Neville and J. P. Vacanti, Artificial Organs 2010, 34, 75-78.
    [20] Y.M. Khong, J. Mang, S.B. Zhou, C. Cheung, K. Doberstein, V. Samper, and H. Yu, Novel intra-tissue perfusion system for culturing thick liver tissue. Tissue Engineering 13 (2007) 2345-2356.
    [21] K. Domansky, W. Inman, J. Serdy, and L. G. Griffith, 3D Perfused Liver Microreactor Array in the Multiwell Cell Culture Plate Format, Proceedings of the Ninth International Conference on Miniturized Systems for Chemistry and Life Sciences (μTAS), Boston, October 9th – 13th, 2005.
    [22] Cheul H. Cho, Jaesung Park, Arno W. Tilles, François Berthiaume, Mehmet Toner, and Martin L. Yarmush, BioTechniques 48:47-52 (January 2010)
    [23] Chung-Kuang Chin, Rong-Jhe Chen, Chien-Yu Fu, Hwan-You Chang, Cheng- Hsien Liu, 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 3 - 7 October 2010, Groningen, The Netherlands
    [24] E. E. Hui and S. N. Bhatia, Proceedings of the National Academy of Sciences 2007, 104, 5722-5726.
    [25] Masaki Nishikawa, Nobuhiko Kojima, Takatoki Yamamoto, Teruo Fujii and Yasuyuki Sakai, AATEX 14, Special Issue, 659-663, Proc. 6th World Congress on
    142
    Alternatives & Animal Use in the Life Sciences, August 21-25, 2007, Tokyo, Japan
    [26] Fanny Evenou, Teruo Fujii1 and Yasuyuki Sakai, AATEX 14, Special Issue, 665-668, Proc. 6th World Congress on Alternatives & Animal Use in the Life Sciences, August 21-25, 2007, Tokyo, Japan
    [27] Yi-Chung Tung, Amy Y. Hsiao, Steven G. Allen, Yu-suke Torisawa, Mitchell Hoc
    and Shuichi Takayama, Analyst, 2011, 136, 473–478 | 473
    [28] Y.-L. Khung, S. D. Graney and N. H. Voelcker, Biotechnology Progress 2006, 22, 1388-1393.
    [29] L. Wu, D. Di Carlo and L. Lee, Biomedical Microdevices 2008, 10, 197-202.
    [30] Y.-C. Toh, C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher and H. Yu, Lab on a Chip 2007, 7, 302-309.
    [31] L. R.-Banks, C. Liew, R. Bhandari, J. FRY and K. Shakesheff, Tissue Engineering, Volume 9, Number 3, 2003
    [32] Y.-C. Toh, T. C. Lim, D. Tai, G. Xiao, D. van Noort and H. Yu, Lab on a Chip 2009, 9, 2026-2035.
    [33] Matthew B. Murphy and Antonios G. Mikos. Polymer Scaffold Fabrication. In Principles of Tissue Engineering. Lanza, R.; Langer, R.; Vacanti, J., Eds.; Elsevier Academic Press: Burlington, 2007; pp. 309-321.
    [34] S. Ramakrishna, K. Fujihara, W. Teo, T. Lim and Z. Ma. (2005). An Introduction to Electrospinning and Nanofibres; World Scientific Publishing Co. Ltd., Singapore.
    [35] S. Liao, R. Murugan, C. K. Chan and S. Ramakrishna. (2008), Journal of the Mechanical Behavior of Biomedical Materials, 1, 252-260.
    [36] J. Lannutti, D. Reneker, T. Ma, D. Tomasko and D. Farson. (2007) Materials Science & Engineering C, 27, 504-509.
    143
    [37] Mark E. Furth and Anthony Atala. Future Perspectives. In Principles of Tissue Engineering.
    [38] A. A. Chen, D. K. Thomas, L. L. Ong, R. E. Schwartz, T. R. Golub and S. N. Bhatia, Proceedings of the National Academy of Sciences 2011, 108, 11842-11847.
    [39] Valerie Liu Tsang, Alice A. Chen, Lisa M. Cho, Kyle D. Jadin, Robert L. Sah, Solitaire DeLong, Jennifer L. West and Sangeeta N. Bhatia, FASEB, 790-801.
    [40] L.K. Chin, proceedings of micro electro mechanical systems, 2012, Paris
    [41] K. Domansky, W. Inman, J. Serdy and L. G. Griffith, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005
    [42] W. G. Koh, A. Revzin, M. V. Pishko, Langmuir , 2002, 18, 7, pp. 2459-2462,
    [43] A. Chen, V. Tsang, D. Albrecht and S. Bhatia in 3-D Fabrication Technology for Tissue Engineering, Vol. Eds.: M. Ferrari, T. Desai and S. Bhatia), Springer US, 2007, pp. 23-38.
    [44] S. R. Khetani and S. N. Bhatia, Nat Biotech 2008, 26, 120-126.
    [45] S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, The FASEB Journal, 13, 1999
    [46] Khetani, S.R., Szulgit, G., Del Rio, J.A., Barlow, C. & Bhatia, S.N. Hepatology 40, 545–554 (2004).
    [47] Yasuyuki sakai, Eric leclerc and Teruo fujii, Microfluidic cell-culture devices, towards in vitro liver tissue reconstitution.
    [48] Y.-L. Khung, S. D. Graney and N. H. Voelcker, Biotechnology Progress 2006, 22, 1388-1393.
    [49] S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn and A. Welle, Biomedical Microdevices 2006, 8, 191-199.
    144
    [50] S. N. Bhatia, M. L. Yarmush and M. Toner, Journal of Biomedical Materials Research 1997, 34, 189-199.
    [51] Gerlach JC, Zeilinger K, Int J Artif Organs, 2002, 25:83–90
    [52] Gerlach JC, Kloppel K, Muller C, Schnoy N, Smith MD, Neuhaus P. Int J Artif Organs, 1993, 16:843–846
    [53] Nyberg SL, Shatford RA, Hu WS, Payne WD, Cerra FB Crit Care Med, 1992, 20:1157–1168
    [54] Lin TY, Lee CS, Chen CC, Lian KY, Lin WSJ, Ann Surg, 1979, 190:48–53.
    [55] Dahmen U, Madrahimov N, Madrahimova F, Ji Y, Schenk A, Dirsch O J Surg Res., 2008, 149(1):15–26
    [56] Catapano G, De Bartolo L, Lombardi CP, Drioli E Int J Artif Organs, 1996, 19:61–71
    [57] Balis UJ, Behnia K, Dwarakanath B, Bhatia SN, Sullivan SJ, Yarmush ML, Toner M Metab Eng. 1999, 1:49–62
    [58] Catapano G, De Bartolo L, Lombardi CP, Drioli E Int J Artif Organs 1996, 19:245–250
    [59] Freshney R Culture of animal cells – a manual of basic techniques, 2000, 4th edn. Wiley, New York
    [60]Rotem A, Toner M, Bhatia S, Foy BD, Tompkins RG, Yarmush ML Biotechnol Bioeng, 1994, 43:654–660
    [61] Mueller-Klieser WF, Sutherland RM Br J Cancer, 1982, 45:256–264
    [62] Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W Cancer Res, 1986, 46:5320–5329
    [63] Tannock IF, Br J Radiol, 1972, 45:515–524
    [64]Vaupel P,Microvasc Res, 1977, 13:399–408
    145
    [65] Jungermann K, Kietzmann T, Hepatology, 2000, 31:255–260
    [66] Kietzmann T, Jungermann K, Cell Biol Toxicol, 1997, 13:243–255
    [67] Koeppen BM, Stanton BA, Berne and Levy Physiology, 6th edn. Mosby, St. Louis, MO, 2008
    [68] McClelland RE, Coger RN, Tissue Eng, 2004, 10:253–266
    [69] Goss RJ: Regeneration versus repair. In Cohen IK, Diegelman RF, Lindblad WJ (eds): Wound Healing: Biochemical and Clinical Aspects. Philadelphia: WB Saunders, 1992, p 20.
    [70]Ott HC et al: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med, 2008, 14:213.
    [71] Fausto N et al: Liver regeneration. Hepatology, 2006, 43:S45.
    [72] A. Grodzinsky, M. Levenston, E. Jin and H. Frank, Cartilage tissue remodeling in response to mechanical forces, Annu. Rev. Biomed. Eng., 2000, 2, 691
    [73] Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S. Tissue Eng 2003; 9(4):757-766. 25
    [74] Freshney R. Culture of animal cells – a manual of basic techniques, 4th ed. New York: Wiley Liss; 2000.
    [75] Catapano G, De Bartolo L, Lombardi CP, Drioli E. Int. J. of Artif. Organs 1996; 19(1):31-41.
    [76] Catapano G, De Bartolo L, Lombardi CP, Drioli E. Int J of Artif Organs 1996; 19(4):245-250.
    [77] Rotem A, Toner M, Tompkins RG, Yarmush ML. Oxygen uptake rates in
    cultured rat hepatocytes. Biotechnol Bioeng 1992, 40:1286-1291.
    146
    [78] Balis UJ, Behnia K, Dwarakanath B, Bathia SN, Sullivan SJ, Yarmush ML, Toner M. Metab Eng 1999, 1:49.
    [79] Catapano G. Int J Artif Organs 1996; 19(1):18-35.
    [80]Martin I, Wendt D, Heberer M. Trends in Biotechnol 2004; 22(2):80-86.
    [81]Muschler GF, Nakamoto C, Griffith LG. Engineering principles of J Bone Joint Surg 2004; 86(7):1541-1558.
    [82]Martin Y, Vermette P. Biomaterials 2005; 26:7481-7503.
    [83]Griffith LG, Swartz MA. Nature Rev 2006; 7:211-224.
    [84] Gerlach JC, Schnoy N, Encke J, Smith MD, Muller C, Neuhaus P. Hepatology 1995; 22: 546-552.
    [85]Gerlach JC, Botsch M, Kardassis D, Lemmens P, Schon M, Janke J, Puhl G, Unger J, Kraemer M, Busse B, Bohmer C, Belal R, Ingenlath M, Kosan M, Kosan B, Sultmann J, Patzold A, Tietze S, Rossaint R, Muller C, Monch E, Sauer IM, Neuhaus P. Int J Artif Organs 2001; 24: 793-798.
    [86]Powers MJ, Janigian D, Baker C, Wack K, Stolz DB, Griffith LG. Tissue Eng 2002; 8:499-513.
    [87]Brown, K.A., Liver transplantation. 2005, 21(3): p. 331-336.
    [88]Michalopoulos, G.K. and M.C. DeFrances, Science, 1997. 276(5309): p. 60-66.
    [89]http://biology.about.com/library/organs/bldigestliver.html
    [90] Allen, J.W., T. Hassanein, and S.N. Bhatia, Hepatology, 2001, 34(3): p. 447-455.
    [91] Strain, A.J. and J.M. Neuberger, Science, 2002, 295(5557): p. 1005
    [92] [Yarmush, M.L., J.C. Dunn, and R.G. Tompkins, Cell Transplant, 1992, 1(5): p. 323-41.
    147
    [93] Allen, J.W. and S.N. Bhatia, Seminars in Cell & Developmental Biology, 2002, 13(6): p. 447-454.
    [94] Chan, C., F. Berthiaume, B.D. Nath, A.W. Tilles, M. Toner, and M.L. Yarmush, Liver Transplantation, 2004, 10(11): p. 1331-1342.
    [95] C.-T. Yeh, R.-N. Chien, C.-M. Chu and Y.-F. Liaw, Hepatology 2000, 31, 1318-1326.
    [96] http://en.wikipedia.org/wiki/HBsAg
    [97] S. E. Mutsaers, Respirology 2002, 7, 171-191.
    [98] Hasirci V., Berthiaume F., Bondre S.P., Gresser J.D., Trantolo D.J., Tissue Engineering, 2001, 7(4):385-394.
    [99] Lee H., Cusick R.A., Browne F., Kim T.H., Ma P.X., Utsunomiya H., Langer R. and Vacanti J.P., “Transplantation, 2002, 73(10):1589-1593.
    [100] Arends M.J., Morris R.G. and Wyllie A.H., “American Journal of Pathology, 1990, 136(3):593-608.
    [101] Glacken M, Fleischaker R, Sinskey A., Trends Biotechnology, 1983, 1:102–108.
    [102] Wolyniec, Kamil, Haupt, Sue, and Haupt, Ygal(Dec 2009) P53 and Cell Death. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0021824]
    [103]Micheau, Olivier; Tschopp Jürg (July 2003). "Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes". Cell (United States) 114 (2): 181–190.
    [104] Stilo, Romania; Liguoro Domenico, di Jeso Bruno, Leonardi Antonio, Vito Pasquale (Apr. 2003). Biochem. Biophys. Res. Commun. (United States) 303 (4): 1034–41.
    [105] http://en.wikipedia.org/wiki/FADD
    148
    [106]H. Song and R. F. Ismagilov, Journal of the American Chemical Society 2003, 125, 14613-14619.
    [107] S. Hoehme, M. Brulport, A. Bauer, E. Bedawy, W. Schormann, M. Hermes, V. Puppe, R. Gebhardt, S. Zellmer, M. Schwarz, E. Bockamp, T. Timmel, J. G. Hengstler and D. Drasdo, Proceedings of the National Academy of Sciences 2010.
    [108] Lehner, Bernadette; Sandner, Beatrice; Marschallinger, Julia; Lehner, Christine; Furtner, Tanja; Couillard-Despres, Sebastien; Rivera, Francisco J.; Brockhoff, Gero et al. (2011), Cell and Tissue Research 345 (3): 313–28
    [109] Yafei Zhang, Bicheng Zhang, Anran Zhang, Yong Zhao,I Jie Zhao, Jian Liu, Jianfei Gao, Dianchun Fang, Zhiguo Rao, (2012) CLINICS 67(9):1093-1099
    [110] Li Liu, Yichen Cao, Charles Chen, Xiaomei Zhang, Angela McNabola, Dean Wilkie, Scott Wilhelm, Mark Lynch, and Christopher Carter, (2006) Cancer Res; 66: (24) 11851-11858.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE