研究生: |
朱智傑 Chu, Chih-Chieh |
---|---|
論文名稱: |
建構細胞色素P450表現之細胞株:異質物代謝系統的最佳化 Generation and Characterizations of a Cell System Expressing Recombinant Cytochrome P450: Implications for Optimization of Xenobiotics Metabolism System |
指導教授: |
宋信文
Sung, Hsing-Wen 徐祖安 Hsu, Tsu-An |
口試委員: |
吳宗遠
Wu, Tzong-Yuan 姚賢宗 Yao, Hsien-Tsung 劉玉麗 Liu, Yu-Li 宋信文 Sung, Hsing-Wen 徐祖安 Hsu, Tsu-An |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 細胞色素 P450 、藥物代謝 、細胞毒性 |
外文關鍵詞: | Cytochrome P450, Drug metabolism, Cytotoxicity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝臟是人體主要進行藥物代謝的器官。在肝臟細胞中,細胞色素P450 (Cytochrome P450,CYP450) 參與了大部份藥物代謝過程的第一步。本研究成功架構CYP450重組慢病毒顆粒,經轉導Huh7細胞後,挑選出CYP450表現量高的細胞株:表現CYP1A2的Huh7-1A2-I-E、表現CYP2E1的Huh7-2E1和表現CYP3A4的Huh7-3A4-I-E的細胞株,其中表現CYP1A2和CYP3A4細胞藉由IRES (Internal ribosome entry site) 調控綠螢光基因,可同時於細胞中表現CYP450和綠螢光蛋白質。穩定表現CYP450的細胞株可作為高速篩選系統的工具,用於研究CYP450抑制劑、探討CYP450於細胞內的代謝功能。為了探討Huh7-1A2-I-E細胞和Huh7-3A4-I-E細胞的效用,本研究選擇會經CYP450作用而產生對細胞更具毒性代謝產物的黃麴毒素 (aflatoxin B1) 來驗證。當Huh7-1A2-I-E或Huh7-3A4-I-E細胞於培養基中添加不同濃度的aflatoxin B1後,其細胞活性下降的比率較對照組 (Huh7-E細胞於培養基中添加aflatoxin B1) 多,然而此現象會因CYP450抑制劑 (CYP1A2:furafylline;CYP3A4:ketoconazole) 的加入而消失,因此,aflatoxin B1極可能會分別經過CYP1A2或CYP3A4代謝成毒性代謝產物,對細胞造成傷害。在Huh7-2E1細胞處理乙醯胺酚 (acetaminophen) 的實驗中也可得到相似的結果。另一方面,我們也證實穩定表現CYP450的細胞可被使用在藥物代謝的研究,接近200個抗癌藥物經CYP450代謝後的結果,代謝產物可被分類成不影響細胞活性、降低細胞活性,和提升細胞活性等三大類;此外,一些目前未定義的CYP1A2抑制劑,像是evoxine和berberine,亦已於此研究所建構的系統中被篩選出來。因此,由蛋白質表現、酵素活性測量、以及毒性代謝物代謝後對細胞的影響等方面,皆能驗證本研究所發展的細胞株的確具有CYP450的功能。為了提高細胞內CYP450的酵素活性,我們嘗試了以基因工程改良細胞本身與以外加藥物於培養基調控細胞內的蛋白質表現量等方式進行探討。在基因層級 (genetic level) 方面,本研究已探討細胞色素b5、細胞色素b5還原酶、細胞色素P450還原酶、和桿狀病毒IE2 (the activator of CMV promoter),對酵素活性的影響。結果得知,細胞色素b5和桿狀病毒IE2能分別在非肝臟細胞 (293FT和Vero) 中提高CYP450酵素活性,但對Huh7細胞則沒有效果,而細胞色素b5還原酶和細胞色素P450還原酶對兩種類型的細胞都沒有幫助。除此之外,由外加藥物調控胞內蛋白表現量的研究中發現,valproic acid (VPA) 能於細胞中增進CYP1A2蛋白質表現,進而提升其酵素活性。本研究中所建構的穩定表現CYP450細胞模式,應能真實的在以細胞為基礎 (cell-based) 的系統中呈現肝臟代謝藥物的結果。此CYP450表現系統的建立與實際經驗 (know-how) 對人類醫藥使用的安全和類肝細胞 (hepatocyte-like cells) 建構的發展,應能提供一個更有效率的研究工具。
Liver plays a major role in drug metabolism that was carried out by a family of critical enzymes; cytochrome P450 (CYP450). In this study, cell lines with high expression level of CYP450 are established based on Huh7 cells: Huh7-1A2-I-E cells expressing CYP1A2, Huh7-2E1 cells expressing CYP2E1, and Huh7-3A4-I-E cells expressing CYP3A4. To achieve this, we constructed recombinant lentiviral particles, containing a single promoter encoding CYP1A2 or CYP3A4 followed by an internal ribosome entry site (IRES) to permit the translation of enhanced green fluorescence protein (EGFP). Such a design has greatly facilitated the selection of stable cell lines because the translations of CYP450 and EGFP proteins would be based on a single bi-cistronic mRNA. The stable CYP450-expressing cells were evaluated as a cell-based model for identification of CYP450 inhibitors and for studies of cytotoxicity resulted from CYP-mediated drug metabolism. Treatment of stable cells with aflatoxin B1 showed that cells with CYP1A2 or CYP3A4 expression were much sensitive to aflatoxin B1 and the cellular toxicity of aflatoxin B1 in cells was prevented by CYP450 inhibitors (CYP1A2: furafylline; CYP3A4: ketoconazol). In addition, acetaminophen was also shown as a toxic substrate in Huh7-2E1 cells. Thus, we confirm that the CYP450-expressing cells have CYP450 characteristics based on the expressed protein level, the detectable enzyme activity, and the CYP450-mediated cytotoxicity study. Furthermore, a collection of approximately 200 drugs were screened using this system, and them could be separated into active metabolites, toxic metabolites, and inactive metabolites according to the cell-based screening based on the cells carrying the CYP450 metabolic activity. Several previously unidentified CYP1A2 inhibitors such as evoxine and berberine were also identified in this study. To enhance the intercellular CYP450 enzyme activity of stable cells, we attempted to modify the cellular characteristics using the genetic engineering approach and to improve the protein expression with the help of the small molecular compounds in culture medium. Cytochrome b5, cytochrome b5 reductase, cytochrome P450 reductase, and baculovirus IE2 (the activator of CMV promoter) were used to increase the enzyme activity. Results showed that cytochrome b5 and baculovirus IE2 enhanced the CYP450 enzyme activity in non-liver cells (293FT and Vero), but it was ineffective in Huh7 cells. Neither did cytochrome b5 reductase nor cytochrome P450 reductase help to enhance the enzymatic activity of CYP450 in liver and non-liver cells. Besides, valproic acid could increase the CYP450 enzyme activity when it was included in the culture medium. Overall, results from this thesis showed that the CYP450-expressing system can be effectively employed to study drug metabolism and to facilitate the establishment of hepatocyte-like cells in the future.
參考文獻
1. Purnapatre, K., S.K. Khattar, and K.S. Saini, Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett, 2008. 259(1): p. 1-15.
2. Guengerich, F.P., Cytochrome p450 and chemical toxicology. Chem Res Toxicol, 2008. 21(1): p. 70-83.
3. Zanger, U.M., et al., Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem, 2008. 392(6): p. 1093-108.
4. Gonzalez, F.J. and H.V. Gelboin, Human cytochromes P450: evolution and cDNA-directed expression. Environ Health Perspect, 1992. 98: p. 81-5.
5. Buters, J.T., et al., cDNA-directed expression of human cytochrome P450 CYP3A4 using baculovirus. Drug Metab Dispos, 1994. 22(5): p. 688-92.
6. Banas, A., et al., Stem cell plasticity: learning from hepatogenic differentiation strategies. Dev Dyn, 2007. 236(12): p. 3228-41.
7. Yagi, K., et al., [Application of mesenchymal stem cells to liver regenerative medicine]. Yakugaku Zasshi, 2008. 128(1): p. 3-9.
8. Bissell, D.M. and M.O. Choun, The role of extracellular matrix in normal liver. Scand J Gastroenterol Suppl, 1988. 151: p. 1-7.
9. Donato, M.T., et al., Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab, 2008. 9(1): p. 1-11.
10. Klingenberg, M., Pigments of rat liver microsomes. Arch Biochem Biophys, 1958. 75(2): p. 376-86.
11. Omura, T. and R. Sato, A new cytochrome in liver microsomes. J Biol Chem, 1962. 237: p. 1375-6.
12. Estabrook, R.W., J. Gonze, and S.P. Nissley, A Possible Role for Pyridine Nucleotide in Coupling Mechanism of Oxidative Phosphorylation. Fed Proc, 1963. 22: p. 1071-5.
13. Cooper, D.Y., et al., Hemoprotein content and activity of solubilized steroid 11 beta-hydroxylase preparations from adrenocortical mitochondria. Life Sci, 1965. 4(21): p. 2109-14.
14. Barnes, H.J., M.P. Arlotto, and M.R. Waterman, Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5597-601.
15. Li, Y.C. and J.Y. Chiang, The expression of a catalytically active cholesterol 7 alpha-hydroxylase cytochrome P450 in Escherichia coli. J Biol Chem, 1991. 266(29): p. 19186-91.
16. Hasler, J.A., Pharmacogenetics of cytochromes P450. Mol Aspects Med, 1999. 20(1-2): p. 12-24, 25-137.
17. Nelson, D.R., et al., P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996. 6(1): p. 1-42.
18. Nelson, D.R., Cytochrome P450 and the individuality of species. Arch Biochem Biophys, 1999. 369(1): p. 1-10.
19. de Waziers, I., et al., Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther, 1990. 253(1): p. 387-94.
20. Tang, C., J.H. Lin, and A.Y. Lu, Metabolism-based drug-drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab Dispos, 2005. 33(5): p. 603-13.
21. Lin, J.H. and A.Y. Lu, Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet, 1998. 35(5): p. 361-90.
22. Yan, Z. and G.W. Caldwell, Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem, 2001. 1(5): p. 403-25.
23. Mueller, G.C. and J.A. Miller, The metabolism of 4-dimethylaminoazobenzene and related carcinogenic aminoazo dyes by rat liver homogenates. Acta Unio Int Contra Cancrum, 1950. 7(1): p. 134-6.
24. Seliskar, M. and D. Rozman, Mammalian cytochromes P450--importance of tissue specificity. Biochim Biophys Acta, 2007. 1770(3): p. 458-66.
25. Guengerich, F.P. and T.L. MacDonald, Mechanisms of cytochrome P-450 catalysis. FASEB J, 1990. 4(8): p. 2453-9.
26. Ikeya, K., et al., Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol Endocrinol, 1989. 3(9): p. 1399-408.
27. Chida, M., et al., Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res, 1999. 90(9): p. 899-902.
28. Nakajima, M., et al., Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem, 1999. 125(4): p. 803-8.
29. Han, X.M., et al., Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics, 2001. 11(5): p. 429-35.
30. Edwards, R.J., et al., Contribution of CYP1A1 and CYP1A2 to the activation of heterocyclic amines in monkeys and human. Carcinogenesis, 1994. 15(5): p. 829-36.
31. Davis, C.D., et al., Metabolic activation of heterocyclic amine food mutagens in the mammary gland of lactating Fischer 344 rats. Cancer Lett, 1994. 84(1): p. 67-73.
32. Robbana-Barnat, S., et al., Heterocyclic amines: occurrence and prevention in cooked food. Environ Health Perspect, 1996. 104(3): p. 280-8.
33. Felton, J.S., et al., The isolation and identification of a new mutagen from fried ground beef: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis, 1986. 7(7): p. 1081-6.
34. Hellmold, H., et al., Cytochrome P450 forms in the rodent lung involved in the metabolic activation of food-derived heterocyclic amines. Carcinogenesis, 1993. 14(9): p. 1751-7.
35. Aune, T. and K.T. Aune, Mutagenic activation of IQ and Me-IQ by liver and lung microsomes from rabbit and mouse, and with isolated lung cells from the rabbit. Carcinogenesis, 1986. 7(2): p. 273-6.
36. Willson, T.M. and S.A. Kliewer, PXR, CAR and drug metabolism. Nat Rev Drug Discov, 2002. 1(4): p. 259-66.
37. Orans, J., D.G. Teotico, and M.R. Redinbo, The nuclear xenobiotic receptor pregnane X receptor: recent insights and new challenges. Mol Endocrinol, 2005. 19(12): p. 2891-900.
38. Koop, D.R. and D.J. Tierney, Multiple mechanisms in the regulation of ethanol-inducible cytochrome P450IIE1. Bioessays, 1990. 12(9): p. 429-35.
39. Hunt, C.M., et al., Regulation of rat hepatic cytochrome P450IIE1 in primary monolayer hepatocyte culture. Xenobiotica, 1991. 21(12): p. 1621-31.
40. Usui, T., Y. Saitoh, and F. Komada, Induction of CYP3As in HepG2 cells by several drugs. Association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull, 2003. 26(4): p. 510-7.
41. Lehmann, J.M., et al., The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest, 1998. 102(5): p. 1016-23.
42. Ostapowicz, G., et al., Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med, 2002. 137(12): p. 947-54.
43. Holt, M.P. and C. Ju, Mechanisms of drug-induced liver injury. AAPS J, 2006. 8(1): p. E48-54.
44. Bai, J. and A.I. Cederbaum, Adenovirus mediated overexpression of CYP2E1 increases sensitivity of HepG2 cells to acetaminophen induced cytotoxicity. Mol Cell Biochem, 2004. 262(1-2): p. 165-76.
45. Ramaiah, S.K., U. Apte, and H.M. Mehendale, Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab Dispos, 2001. 29(8): p. 1088-95.
46. Yan, Q.G., et al., Overexpression of CYP2E1 enhances sensitivity of hepG2 cells to fas-mediated cytotoxicity. Cancer Biol Ther, 2008. 7(8): p. 1280-7.
47. Fukuda, K., T. Ohta, and Y. Yamazoe, Grapefruit component interacting with rat and human P450 CYP3A: possible involvement of non-flavonoid components in drug interaction. Biol Pharm Bull, 1997. 20(5): p. 560-4.
48. Hidaka, M., et al., Inhibitory effects of fruit juices on cytochrome P450 2C9 activity in vitro. Biosci Biotechnol Biochem, 2008. 72(2): p. 406-11.
49. Michalets, E.L., Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy, 1998. 18(1): p. 84-112.
50. Hiemke, C., et al., Fluvoxamine augmentation of olanzapine in chronic schizophrenia: pharmacokinetic interactions and clinical effects. J Clin Psychopharmacol, 2002. 22(5): p. 502-6.
51. Tanaka, E., Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther, 1998. 23(6): p. 403-16.
52. Gallagher, E.P., et al., The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Toxicol Appl Pharmacol, 1996. 141(2): p. 595-606.
53. Mace, K., et al., Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis, 1997. 18(7): p. 1291-7.
54. Van Vleet, T.R., K. Mace, and R.A. Coulombe, Jr., Comparative aflatoxin B(1) activation and cytotoxicity in human bronchial cells expressing cytochromes P450 1A2 and 3A4. Cancer Res, 2002. 62(1): p. 105-12.
55. Kobertz, W.R., et al., An intercalation inhibitor altering the target selectivity of DNA damaging agents: synthesis of site-specific aflatoxin B1 adducts in a p53 mutational hotspot. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9579-84.
56. Lee, S.S., et al., Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem, 1996. 271(20): p. 12063-7.
57. Zaher, H., et al., Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol, 1998. 152(1): p. 193-9.
58. Donato, M.T., et al., Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab Dispos, 2004. 32(7): p. 699-706.
59. Buchschacher, G.L., Jr. and F. Wong-Staal, Development of lentiviral vectors for gene therapy for human diseases. Blood, 2000. 95(8): p. 2499-504.
60. Burns, J.C., et al., Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A, 1993. 90(17): p. 8033-7.
61. de Groene, E.M., et al., Development of human cytochrome P450-expressing cell lines: application in mutagenicity testing of ochratoxin A. Cancer Res, 1996. 56(2): p. 299-304.
62. Naldini, L., Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol, 1998. 9(5): p. 457-63.
63. Dull, T., et al., A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998. 72(11): p. 8463-71.
64. Naldini, L., et al., Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11382-8.
65. Yee, J.K., et al., A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A, 1994. 91(20): p. 9564-8.
66. Zhang, J.H., T.D. Chung, and K.R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 1999. 4(2): p. 67-73.
67. Gonzalez, F.J. and K.R. Korzekwa, Cytochromes P450 expression systems. Annu Rev Pharmacol Toxicol, 1995. 35: p. 369-90.
68. Kanebratt, K.P. and T.B. Andersson, Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos, 2008. 36(7): p. 1444-52.
69. Lee, K.D., et al., In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004. 40(6): p. 1275-84.
70. Dai, G., et al., Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver. Mol Pharmacol, 2005. 68(6): p. 1590-6.
71. Pan, K.L., et al., Development of NS3/4A protease-based reporter assay suitable for efficiently assessing hepatitis C virus infection. Antimicrob Agents Chemother, 2009. 53(11): p. 4825-34.
72. Buttke, T.M., J.A. McCubrey, and T.C. Owen, Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods, 1993. 157(1-2): p. 233-40.
73. Malich, G., B. Markovic, and C. Winder, The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology, 1997. 124(3): p. 179-92.
74. Porter, T.D., The roles of cytochrome b5 in cytochrome P450 reactions. J Biochem Mol Toxicol, 2002. 16(6): p. 311-6.
75. Lamphear, B.J., et al., Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem, 1995. 270(37): p. 21975-83.
76. Manson, M.M., et al., Mechanism of action of dietary chemoprotective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogenesis, 1997. 18(9): p. 1729-38.
77. Epifano, F., et al., Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry, 2007. 68(7): p. 939-53.
78. Zhou, S.F., Z.W. Zhou, and M. Huang, Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology, 2010. 278(2): p. 165-88.
79. Liu, C.Y., et al., RING and coiled-coil domains of baculovirus IE2 are critical in strong activation of the cytomegalovirus major immediate-early promoter in mammalian cells. J Virol, 2009. 83(8): p. 3604-16.
80. Liu, C.Y., H.Z. Chen, and Y.C. Chao, Maximizing baculovirus-mediated foreign proteins expression in mammalian cells. Curr Gene Ther, 2010. 10(3): p. 232-41.
81. Rosenberg, G., The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci, 2007. 64(16): p. 2090-103.
82. Wulhfard, S., et al., Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol, 2010. 148(2-3): p. 128-32.
83. Backliwal, G., et al., Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng, 2008. 101(1): p. 182-9.
84. Nakabayashi, H., et al., Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium. Gann, 1984. 75(2): p. 151-8.
85. Nakabayashi, H., et al., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Research, 1982. 42(9): p. 3858-63.
86. Seki, S., et al., Establishment and characteristics of human hepatocellular carcinoma cells with metastasis to lymph nodes. Hepatogastroenterology, 1999. 46(29): p. 2812-7.
87. Blight, K.J., J.A. McKeating, and C.M. Rice, Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol, 2002. 76(24): p. 13001-14.
88. Vermeir, M., et al., Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol, 2005. 1(1): p. 75-90.
89. McDonagh, P.D., et al., Determinants of specificity for aflatoxin B1-8,9-epoxide in alpha-class glutathione S-transferases. Biochem J, 1999. 339 ( Pt 1): p. 95-101.
90. Waffo, A.F., et al., Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. Phytochemistry, 2007. 68(5): p. 663-7.
91. Vuddanda, P.R., S. Chakraborty, and S. Singh, Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs, 2010. 19(10): p. 1297-307.
92. Kulkarni, S.K. and A. Dhir, Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res, 2010. 24(3): p. 317-24.
93. Ma, X., et al., Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One, 2010. 5(10): p. e13489.
94. Qin, X., et al., Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine. J Immunol, 2010. 185(3): p. 1855-63.
95. Urichuk, L., et al., Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab, 2008. 9(5): p. 410-8.
96. Wild, M.J., D. McKillop, and C.J. Butters, Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan. Xenobiotica, 1999. 29(8): p. 847-57.
97. Spigelman, A.D., et al., Caffeine phenotyping of cytochrome P4501A2, N-acetyltransferase, and xanthine oxidase in patients with familial adenomatous polyposis. Gut, 1995. 36(2): p. 251-4.
98. Uhlemann, A.C. and S. Krishna, Antimalarial multi-drug resistance in Asia: mechanisms and assessment. Curr Top Microbiol Immunol, 2005. 295: p. 39-53.
99. Savarino, A., et al., Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis, 2003. 3(11): p. 722-7.
100. Rodrigues, J.R. and N. Gamboa de Dominguez, Plasmodium berghei: in vitro and in vivo activity of dequalinium. Exp Parasitol, 2007. 115(1): p. 19-24.
101. Barge, H., [Industrial medical experience with dequalinium chloride in treatment of inflammatory diseases of the mouth cavity and pharynx]. Dtsch Med J, 1968. 19(2): p. 51-2.
102. Miller, L.K., Baculoviruses as gene expression vectors. Annu Rev Microbiol, 1988. 42: p. 177-99.
103. Huh, N.E. and R.F. Weaver, Categorizing some early and late transcripts directed by the Autographa californica nuclear polyhedrosis virus. J Gen Virol, 1990. 71 ( Pt 9): p. 2195-200.
104. Guillouzo, A., et al., Use of human hepatocyte cultures for drug metabolism studies. Toxicology, 1993. 82(1-3): p. 209-19.
105. Andersson, T.B., The application of HepRG cells in evaluation of cytochrome P450 induction properties of drug compounds. Methods Mol Biol, 2010. 640: p. 375-87.
106. Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
107. Lee, J.C., et al., High-efficiency protein expression mediated by enterovirus 71 internal ribosome entry site. Biotechnol Bioeng, 2005. 90(5): p. 656-62.
108. Ahn, M.R., D.K. Kim, and Y.Y. Sheen, Trichostatin A, a histone deacetylase inhibitor stimulate CYP3A4 proximal promoter activity in Hepa-I cells. Arch Pharm Res, 2004. 27(4): p. 415-21.
109. Takizawa, D., et al., Histone deacetylase inhibitors induce cytochrome P450 2B by activating nuclear receptor constitutive androstane receptor. Drug Metab Dispos, 2010. 38(9): p. 1493-8.
110. Gao, S.S., et al., Sulforaphane induces glutathione S-transferase isozymes which detoxify aflatoxin B(1)-8,9-epoxide in AML 12 cells. Biofactors, 2010. 36(4): p. 289-96.
111. 潘考祿 , (2010) , 發展適合C型肝炎病毒感染之細胞培養模式 , 國立清華大學
化學工程學系未出版之博士班論文。
112. 張菁文 , (2002) , 藥物引起肝臟傷害 , 國立成功大學臨床藥學研究所未出版之
碩士班論文。