簡易檢索 / 詳目顯示

研究生: 鍾興宜
論文名稱: 垂直梳狀致動微掃瞄鏡之分析與控制
Analysis and Control of Vertically Combdrive-Actuated Micromirrors
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 梳狀致動微掃瞄鏡適應性控制
外文關鍵詞: combdrive, micromirror, adaptive control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微掃瞄鏡驅動方式以靜電致動最為常用,主要是因為它具有結構簡單與單位能量密度大的特性,且在靜電致動微掃瞄鏡之中,垂直靜電式是比較可得到大角度驅動,但由於製作上既有的誤差、微小尺度流場效應以及靜電-結構耦合驅動方式,造成動態特性較難以簡單的數學模式來表示,這對傳統控制器設計是有其限制的。
    故本論文為了瞭解垂直梳狀致動微掃瞄鏡相關特性,分析微掃瞄鏡之一般機械動態性質,包括慣性、阻尼與剛性。並推導V型扭轉臂之剛性,以ANSYS模擬各方向共振頻率及不同置放角度之扭轉臂對於共振頻率的影響,驗證剛性分析的正確性。在靜電力部分,利用重疊面積方式推導出單位平方電壓靜電扭矩。並使用2D(ANSYS 7.0)與3D(CoventorWare 2003)軟體模擬靜電扭矩,將其結果與重疊面積方式比較其差異。以及藉由直流、頻率及步階響應之實驗結果討論分析正確性。再針對複雜的靜電-結構耦合之非線性,以及製程誤差造成的不確定性,提出具有估測函數之適應系統,使其有較佳的暫態與穏態響應,保持控制系統的工作性能。


    目錄 摘要.……………………………………………………………………Ⅰ 誌謝………………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅲ 圖目錄……………………………………………………………………Ⅳ 表目錄……………………………………………………………………Ⅶ 第一章 緒論………………………………………………………………1 1.1 研究背景與動機………………………………………………1 1.2 文獻回顧………………………………………………………4 1.3 本文大綱………………………………………………………11 第二章 微掃瞄鏡結構分析與模擬……………………………………12 2.1 機械動態………………………………………………………13 2.2 扭轉和側向共振 ……………………………………………14 2.3 共振模擬………………………………………………………20 2.4 靜電扭矩的分析與模擬………………………………………22 第三章 適應控制器設計及分析………………………………………33 3.1 系統描述………………………………………………………33 3.2 控制器設計與穏定性分析……………………………………34 3.3 電腦模擬………………………………………………………38 3.3.1 PI控制器……………………………………………39 3.3.2 適應性控制…………………………………………42 第四章 實驗結果與討論………………………………………………49 4.1 製程結果………………………………………………………49 4.2 直流穏態特性…………………………………………………57 4.3 頻率響應………………………………………………………61 4.4 步階響應………………………………………………………64 第五章 結論與未來工作………………………………………………69 附錄A 正交級數近似法…………………………………………………71 A.1 正交級數 ……………………………………………………71 A.2 完全性之定義…………………………………………………72 A.3 正交級數收斂定理……………………………………………72 A.4 傅立葉級數……………………………………………………73 參考文獻:………………………………………………………………76

    [1] H. Toshiyoshi and H. Fujita, “An Electrostatically Operated Torsion Mirror for Optical Switching Device,” in Proc. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’95), Stockholm, Sweden, pp. 25-29, June 1995.
    [2] H. Toshiyoshi and H. Fujita, “Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix,” IEEE Journal of MEMS, vol. 5, no. 4, December 1996.
    [3] D. L. Dickensheets, and G. S. Kino, “Silicon-Micromachined Scanning Confocal Optical Microscope,” IEEE Journal of MEMS, vol. 7, no. 1, pp. 38-47, March 1998.
    [4] H. Miyajima, and Nobuyoshi Asaoka, “A MEMS Electromagnetic Optical Scanner for a Commercial Confocal Laser Scanning Microscope,” IEEE Journal of MEMS, vol. 12, no. 3, June 2003.
    [5] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, “A MEMS-Based Projection Display, ” Proceedings of the IEEE, vol. 86, no. 8, August 1998.
    [6] Y. Chen, Y. Shroff, W. G. Oldham, “Modeling and Control of Nanomirrors for EUV Maskless Lithography, ” Technical Proceedings of the Third International Conference on Modeling and Simulation of Microsystems, pp. 602-4, 2000.
    [7] C. H. Ji and Y. K. Kim, “Electromagnetic Micromirror Array With Single-Crystal Silicon Mirror Plate and Aluminum Spring, ”Journal of Lightwave Technology, vol. 21, no. 3, March 2003.
    [8] M. Huja, M. Husak, “Thermal microactuators for optical purpose , ”International Conference On Information Technology: Coding And Computing, pp. 137-142, April 2001.
    [9] M. G. Harris, D. M. Gibbs, “A piezoelectric actuated scanning mirror system utilizing a type one control loop, ”IEEE Proceedings on Energy and Information Technologies in the Southeast, vol. 3, pp. 1267-1274, 1989.
    [10] M. H. Kiang, D. A. Francis, “Actuated polysilicon micromirrors for raster-scanning displays,” International Conference on Solid State Sensors and Actuators, vol. 1, pp. 323-326, June 1997.
    [11] H. Schenk, P. Durr, D. Kunze, H. Lakner, H. Kuck, “ An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes, ”Proceeding of MEMS'00, Miyajaki, Japan, pp. 473-478, Jan. 2000.
    [12] T. W. Yeow, K. Y. Lim, B. Wilson, A. A. Goldenberg, “A low-voltage electrostatically actuated MEMS scanner for in vivo biomedical imaging, ”Proceeding of Microtechnologies in Medicine & Biology, pp. 205-207, May 2002.
    [13] J. A. Yeh, H. Jiang and N. C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for a Torsional Actuator, ”Journal of MEMS, vol. 8, pp. 456-465, Dec. 1999.
    [14] J.-H. Lee, Y.-C. Ko, D.-H. Kong, J.-M. Kim, Ki Bang Lee, Duk-Young Jeonc, “Design and fabrication of scanning mirror for laser display, ”Sensors and Actuators A96, pp. 223-230, 2002.
    [15] P. R. Patterson, D. H. Nguyen, H. Toshiyoshi, “A scanning micromirror with angular comb drive actuation,” Proceeding of MEMS'02, pp. 544-547, Jan. 2002.
    [16] Jerwei Hsieh, Chien Cheng Chu, Tsai, J.M.L., Weileun Fng, “Using extended BELST process in fabricating vertical comb actuator for optical application,” IEEE/LEOS Optical MEMs, pp. 133-134, Aug. 2002.
    [17] Chien Cheng Chu, Tsai, J.M., Jerwei Hsieh, Weileun Fang, “A novel electrostatic vertical comb actuator fabricated on (111) Silicon Wafer,” Proceeding of MEMS'03, Kyoto, pp. 56-59, Jan. 2003.
    [18] J. C. Chiou and Y. C. Lin, “A Novel Control Design of Stepping Micromirror Using Multiple Electrostatic Driving Electrodes”, IEEE-LEOS Optical MEMS, 2001.
    [19] J. C. Chiou, Y. C. Lin, and S.D. Wu, “Closed-loop fuzzy control of torsional micromirror with multiple electrostatic electrodes,” IEEE-LEOS Optical MEMS, 2002.
    [20] J. C Chiou and Y. C. Lin, “A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect,” Journal of MEMS, vol. 12, no. 6, Dec 2003.
    [21] H. Toshiyoshi, W. Piyawattanametha, C. T. Chan, and M. C. Wu, “Linearization of Electrostatically Actuated Surface Micromachined 2-D Optical Scanner,” Journal of MEMS, vol. 10, no. 2, June 2001.
    [22] Jianglong Zhang, Y. C. Lee, V. M. Bright, J. Neff, “Digitally positioned micromirror for open-loop controlled applications,” Proceedings of MEMS'02, pp. 536-539, Jan. 2002.
    [23] N. Yazdi, H. Sane, T. D. Kudrle, C. H. Mastrangelo, “Robust sliding-mode control of electrostatic torsional micromirrors beyond the pull-in limit,”TRANSDUCERS'03, vol. 2, pp. 1450-1453, 2003.
    [24] H. Sane, N. Yazdi, and C. Mastrangelo, “Applicationof Sliding Mode Control to Electrostatically Actuated Two-Axis Gimbaled Micromirrors,” Proceedings American Control Conference, pp. 3726 – 3721, June 2003.
    [25] 黃安橋,“適應控制理論”上課講義, 2000.
    [26] 郭有順,“不確定時變系統之適應控制研究,”國立台灣科技大學機械工程系 博士論文, 2001.
    [27] Erwin Kreyszig, “Advanced engineering mathenatics,” pp. 553-557, 8th ed., 1999.
    [28] 曾繁根,“微系統設計”上課講義, 2001.
    [29] R. A. Conant,“Micromachined Mirrors,” Ph.D. Thesis, EECS, U. C. Berkeley, Spring 2002.
    [30] Jan Mehner, J. Wibbeler, “ANSYS Multiphysics Capabilities for MEMS Modeling and Simulation,” ANSYS Solutions, vol. 3, no. 3.
    [31] J. A. Yeh, C.-Y. Hui and N. C. Tien, “Electrostatic Model for an Asymmetric Combdrive,” IEEE/ASME Journal of MEMS, vol. 9, pp. 126-135, March 2000.
    [32] 朱健誠,“高深寬比 BELST 製程於垂直靜電驅動微掃描面鏡之應用,”國立清華大學動力機械工程系 碩士論文, 2002.
    [33] R. C. Hibbeler, “Engineering Mechanics,” pp.626, 1997.
    [34] I. J. Nagrath and M. Gopal, “Control Systems Engineering,” Second Edition, pp. 144, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE