簡易檢索 / 詳目顯示

研究生: 許祐禎
Hsu, Yu-Chen
論文名稱: 利用炔烴化合物在金催化下合成具有高官能化的有機分子
Gold-Catalyzed Synthesis of Highly Functionalized Organic Molecules from Alkyne Compounds
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 蔡易州
Tsai, Yi-Chou
彭之皓
Peng, Chi-How
侯敦仁
Hou, Duen-Ren
吳明忠
Wu, Ming-Jung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 878
中文關鍵詞: 金催化炔烴金碳烯環化
外文關鍵詞: Gold Catalysis, Alkyne, Gold Carbene, Cyclization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章節 :
    第一章我們使用了α-亞氨基炔烴I-1與芳香醛I-2進行反應,在有氧氣環境下進行金催化反應先進行[4 + 2]環化反應形成六圓環的氧鎓類化合物I-I,之後該類化合物會受到水的攻擊,然後對關鍵中間體進行O2氧化來得到具有高比例Z型態的選擇性化合物I-3。
    第二章節 :
    第二章我們利用金催化劑先活化1,4-二炔-3-醇的基質II-1再與N-羥基苯胺基質II-2進行一種新的N,O-官能化,可以在反應中產生出高度官能化的吡咯衍生物II-3。在我們推測的機構中,N-羥基苯胺基質可以經過區域選擇性N攻擊來攻擊較多電子雲的炔烴,此反應路徑會形成不穩定的酮衍生物的硝酮分子,此分子經由分子內氧轉移與其束縛的炔反應來形成α-氧金碳烯此中間物II-I。在此篇研究成果中,我們成功利用此新合成方法來合成生物活性分子PDE4抑製劑。
    第三章節 :
    第三章介紹了金催化的N-炔丙基炔酰胺與蒽的環化反應可以通過兩種不同的機構進行,首先,第一種機構是在末端N-炔丙基炔基酰胺的情況下,生成的α-亞氨基金碳烯與鏈狀炔反應生成乙烯基陽離子之後再進行水解,水解的方法是使用對位甲苯磺酸進行反應最終生成吡咯並[2,3-b]喹啉衍生物。第二種機構是針對內部炔烴,其α-亞氨基金碳烯是透過烯基金碳烯來與束縛的炔烴反應,這兩種路徑最終都會產生4-酮-2-氨基吡咯衍生物,而我們的機構分析指出:對於末端乙酰胺,水是比蒽醌更好的親核試劑,而對於內部乙酰胺的反應性來說,水和蒽醌的反應性是相同的。
    第四章節 :
    第四章介紹了在使用5-羥基1,3-二炔-1-酰胺基質和8-甲基喹啉氧化物透過金催化氧化反應會進行兩種不同的途徑,當我們使用5-羥基1,3-二炔-1-酰胺基質的時候,會意外的發現C(3)區域選擇性,因此我們開始專注於5-羥基1,3-二炔-1-酰胺基質的C(3)氧化,因為我們觀察到相同的基質會在使用AuCl3來進行催化反應環化時得到2-氨基亞甲基呋喃-3(2H)-酮衍生物,而在使用CyJohnPhosAuCl/AgSbF6來進行催化反應環化的時候會得到2-氨基-4H-吡喃-4-酮衍生物,除此之外,在此篇文章中我們也進行了密度泛函理論計算以合理化對5-羥基1,3-二炔-1-酰胺的C(3)區域選擇性進行解釋。


    Chapter I :
    The first chapter describes the Gold-catalyzed aerobic oxidations of α-iminoalkynes I-1 with aryl aldehydes I-2 led to oxidative 1,3-hydroacyclation reactions, yielding high Z-selectivity. We postulate an initial [4+2]-annulation of α-iminoalkynes with aldehydes to form a six-membered oxonium species I-I that is attacked by water, followed by the O2 oxidation of a key intermediate.
    Chapter II :
    The second chapter shows the new N,O-functionalization of 1,4-diyn-3-ols II-1 with N-hydroxyanilines II-2 to yield highly functionalized pyrrole derivatives II-3. In a postulated mechanism, N-hydroxyaniline attacks the more electron-rich alkynes via regioselective N-attack to form unstable ketone-derived nitrones that react with their tethered alkynes via an intramolecular oxygen-transfer to form α-oxo gold carbenes II-I. This new method is applicable to a short synthesis of a bioactive molecule, a PDE4 inhibitor.
    Chapter III :
    The third chapter describes the Gold-catalyzed annulation of N-propargyl ynamides with anthranils can proceed by two distinct mechanisms. In the case of a terminal N-propargyl ynamide, its resulting α-imino gold carbene reacts with a tethered alkyne to generate a vinyl cation to enable hydrolysis, which ultimately yields a pyrrolo[2,3-b]quinoline derivative after treatment with p-toluenesulfonic acid. For an internal alkyne, its α-imino gold carbene reacts with a tethered alkyne via either a vinyl cation or an alkenylgold carbene; both paths ultimately lead to a 4-ketone-2-aminopyrrole derivative. Our mechanistic analysis indicates that water is a better nucleophile than anthranil for terminal ynamides, whereas water and anthranils are equally reactive for internal ynamides.
    Chapter IV :
    This work reports two distinct paths in catalytic oxidations of 1,3-diynamides with 8-methylquinoline oxide. A typical C(1) regioselectivity was observed for aryl-substituted 1,3-diyn-1-amides, whereas an unexpected C(3) regioselectivty occurred for 5-hydroxy1,3-diyn-1-amides. We focused on the C(3) oxidations of 5-hydroxy1,3-diyn-1-amides because we observed two oxidative cyclizations of the same substrates to yield 2-aminomethylenefuran-3(2H)-ones and 2-amino-4H-pyran-4-ones using AuCl3 and a cationic gold catalyst, respectively. Density functional theory calculations were performed to rationalize the C(3) regioselectivity on 5-hydroxy1,3-diyn-1-amides.

    謝誌 I 摘要 III Abstract VI 發表著作 X 目錄 XI 圖目錄 XV 表目錄 XVIII 附圖目錄 XIX 第一章 1 第一節 前言與文獻回顧 2 1.1 低價數的過渡金屬1,2-加氫酰化 3 1.1.1銠(I)催化進行1,2-加氫酰化反應 3 1.1.2銥(I)催化進行1,2-加氫酰化反應 5 1.1.3鈷(I)催化進行1,2-加氫酰化反應 6 1.1.4釕(II)催化進行1,2-加氫酰化反應 6 1.1.5鎳(0)催化進行1,2-加氫酰化反應 7 1.2 Z型態扮演著關鍵的生物分子中間體 8 第二節 結果與討論 10 2.1 實驗動機與研究 10 2.2 反應條件最佳化 10 2.3 官能基容忍度測試 12 2.4 同位素2H與18O的標定實驗 17 2.5 產物結構與反應機構的探討 20 第三節 結論 23 第四節 實驗部分 24 4.1 實驗的一般操作 24 4.2 實驗基質合成 25 4.3 催化步驟 27 4.4 光譜資料 28 4.5 I-3a的X-ray資料 54 4.6 I-3m 的X-ray資料 63 4.7 I-3t的X-ray資料 71 4.8 理論計算I-3a的E/Z型態相對能量 80 第五節 參考文獻 84 第六節 附圖 89 第二章 169 第一節 前言與文獻回顧 170 1.1硝酮進行1,3-偶極環加成 171 1.1.1硝酮與缺電子的烯烴進行[3+2]環化反應 171 1.1.2硝酮與多電子的烯烴進行1,3-偶極環加成反應 171 1.1.3硝酮與炔烴進行Kinugasa反應 172 1.2利用金催化活化烯/炔烴與N-羥基苯胺進行反應 174 1.2.1 金催化的N-羥基苯胺與炔烴的分子間反應 174 1.2.2 金催化的N-羥基苯胺與烯炔的分子間反應 174 1.2.3 金催化的N-羥基苯胺與雙炔的分子間反應 175 1.2.4金催化的N-羥基苯胺與二丙烯炔的分子間反應 176 第二節 結果與討論 178 2.1 實驗動機與研究 178 2.2 反應條件最佳化 179 2.3 1,4-二炔-3-醇化合物官能基容忍度測試 182 2.4 N-羥基苯胺官能基容忍度測試 186 2.5 PDE4抑製劑的合成 190 2.6 反應機構的探討 191 第三節 結論 193 第四節 實驗部分 194 4.1 實驗的一般操作 194 4.2 實驗基質合成 195 4.3 催化步驟 200 4.4 光譜資料 200 4.5 II-3a的X-ray資料 240 4.6 II-4d的X-ray資料 248 第五節 參考文獻 258 第六節 附圖 262 第三章 398 第一節 前言與文獻回顧 399 1.1 α-oxo金屬碳烯進行1,6-碳烯轉移 401 1.1.1 α-oxo銠碳烯進行1,6-碳烯轉移反應 401 1.1.2 α-oxo金碳烯進行1,6-碳烯轉移反應 402 1.2 利用1,3-酰氧基轉移生成金碳烯 403 1.3 利用含氮的親合試劑來生成α-imino金屬碳烯 404 1.3.1 利用疊氮化合物引發酰胺進行胺化環化反應 404 1.3.2 鉑催化對異噁與雜取代炔烴的環化反應 405 1.3.3 金催化蒽醌和炔烴進行環化反應 406 1.4 利用生成的金碳烯與蒽醌進行反應 407 第二節 結果與討論 408 2.1 實驗動機與研究 408 2.2 反應條件最佳化 409 2.3 末端N-炔丙基炔酰胺官能基容忍度測試 411 2.4 蒽醌官能基容忍度測試 416 2.5 內部N-炔丙基炔酰胺官能基容忍度測試 419 2.6 針對水和蒽醌競爭的探討 421 2.7 同位素18O的標定實驗與官能基轉化應用 423 2.8 反應機構的探討 425 第三節 結論 428 第四節 實驗部分 429 4.1 實驗的一般操作 429 4.2 實驗基質合成 431 4.3 催化步驟 435 4.4 光譜資料 436 4.5 III-4a的X-ray資料 478 4.6 III-4c的X-ray資料 487 4.7 III-5i的X-ray資料 504 4.8 III-7a’的X-ray資料 514 第五節 參考文獻 528 第六節 附圖 535 第四章 659 第一節 前言與文獻回顧 660 1.1 酮亞胺中間體的生成並用親合試劑攻打在C(1)上方 662 1.1.1 利用酮亞胺中間體的生成來進行[2+2]環化反應 662 1.1.2 金催化使酰胺進行加氫胺化 664 1.1.3 利用鋅催化在乙酰胺C(1)產生1,2-氧化加成反應 665 1.1.4 利用金催化進行炔烴酰胺的環化反應 666 1.2 金催化透過C(1)區域選擇性進行酰胺的氧化環化反應 666 1.2.1 金催化進行吲哚-酰胺官能團的分子內環化 667 1.2.2 金催化鄰炔基聯芳基進行分子間氧化 668 1.2.3 金催化疊氮化物與亞酰胺進行分子間反應 669 1.2.4 金催化進行N-炔丙基亞胺與蒽醌環化反應 670 第二節 結果與討論 671 2.1 實驗動機與研究 671 2.2 針對5-羥基-1,3-二炔-1-酰胺進行反應條件優化 672 2.3 利用不同的5-羥基-1,3-二炔-1-酰胺選擇性形成五圓環 674 2.4 利用不同的5-羥基-1,3-二炔-1-酰胺選擇性形成六圓環 677 2.5 針對C(1)和C(3)區域選擇性進行密度泛函理論計算與三種產物的生成進行探討 681 第三節 結論 684 第四節 實驗部分 685 4.1 實驗的一般操作 685 4.2 實驗基質合成 687 4.3 催化步驟 689 4.4 光譜資料 690 4.5 IV-3c的X-ray資料 711 4.6 IV-3d的X-ray資料 740 4.7 IV-4j的X-ray資料 749 4.8 反應機制理論計算的細節資料 758 第五節 參考文獻 804 第六節 附圖 811

    Chapter I :
    [1]. For recent reviews on catalytic hydroacylation, see: a) J. C. Leung and M. J. Krische, Chem. Sci., 2012, 3, 2202-2209; b) M. C. Willis, Chem. Rev., 2010, 110, 725-748.
    [2]. For rhodium-catalyzed hydroacylation, see selected examples: a) A. B. Chaplin, J. F. Hooper, A. S. Weller and M. C. Willis, J. Am. Chem. Soc., 2012, 134, 4885-4897; b) C. Matthias, S. L. Wason, B. Estepa, J. F. Hooper and M. C. Willis, Angew. Chem., Int. Ed., 2013, 52, 13280-13283; c) S. J. Poingdestre, J. D. Goodacre, A. S. Weller and M. C. Willis, Chem. Commun., 2012, 48, 6354-6356; d) P. Lenden, D. A. Entwistle and M. C. Willis, Angew. Chem. Int. Ed., 2011, 50, 10657-10660; e) K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 8078-8079; f) K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2002, 124, 10296-10297; g) K. Tanaka and G. C. Fu, Chem. Commun., 2002, 684-685.
    [3]. For iridium-catalyzed hydroacylation, see: a) S. Hatanaka, Y. Obora and Y. Ishii, Chem. Eur. J., 2010, 16, 1883-1888.
    [4]. Y. Obora, S. Hatanaka and Y. Ishii, Org. Lett., 2009, 11, 3510-3513.
    [5]. For cobalt-catalyzed hydroacylation, see: a) C. P. Lenges and M. Brookhart, J. Am. Chem. Soc., 1997, 119, 3165-3166; b) C. P. Lenges, P. S. White and M. Brookhart, J. Am. Chem. Soc., 1998, 120, 6965-6979.
    [6]. For ruthenium-catalyzed hydroacylation, see: a) H. Miura, K. Wada, S. Hosokawa and M. Inoue, Chem. Eur. J., 2013, 19, 861-864; b) R. L. Patman, M. R. Chaulagain, V. M. Williams and M. J. Krische, J. Am. Chem. Soc., 2009, 131, 2066-2067.
    [7]. For nickel-catalyzed hydroacylation, see selected examples: a) F. Yang, T. Jin and Y. Yamamoto, Tetrahedron., 2012, 68, 5223-5228; b) Y. Miyazaki, Y. Yamada, Y. Nakao and T. Hiyama, Chem. Lett., 2012, 41, 298-300; c) Y. Nakao, H. Idei, K. S. Kanyiva and T. Hiyama, J. Am. Chem. Soc., 2009, 131, 5070-5071.
    [8]. See selected examples: a) T. Ishikawa, T. Aikawa, S. Watanabe and S. Saito, Org. Lett., 2006, 8, 3881-3884; b) M. J. Fan, G. Q. Li and Y. M. Liang, Tetrahedron., 2006, 62, 6782-6791; c) R. K. Kawade, C. C. Tseng and R. S. Liu, Chem. Eur. J., 2014, 20, 13927-13931; d) P. Sharma and R. S. Liu, Chem. Eur. J., 2015, 21, 4590-4594; e) Z. H. Zhang, L. Yin and Y. M. Wang, Adv. Synth. Catal., 2006, 348, 184-190.
    [9]. a) B. H. Lipshutz and B. Amorelli, J. Am. Chem. Soc., 2009, 131, 1396-1397; b) J. U. Jeong, X. Chen, A. Rahman, D. S. Yamashita and J. I. Luengo, Org. Lett., 2004, 6, 1013-1016; c) K. Paulvannan, J. B. Schwarz and J. R. Stille, Tetrahedron Lett., 1993, 34, 215-218; d) K. Paulvannan and J. R. Stille, J. Org. Chem., 1994, 59, 1613-1620.
    [10]. For gold-catalyzed oxidations of alkynes using organic oxides, see: a) T. Wang, S. Shi, M. M. Hansmann, E. Rettenmeier, M. Rudolph and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2014, 126, 3789-3793; b) T. Wang, L. Huang, S. Shi, M. Rudolph and A. S. K. Hashmi, Chem. Eur. J., 2014, 20, 14868-14871; c) T. Wang, S. Shi, M. Rudolph and A. S. K. Hashmi, Adv. Syn. Catal., 2014, 356, 2337-2342; d) H. Chen and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 11775-11779; e) P. Nosel, S. Moghimi, C. Hendrich, M. Haupt, M. Rudolph, F. Rominger and A. S. K. Hashmi, Adv. Syn. Catal., 2014, 356, 3755-3760.
    [11]. See selected examples: a) T. Ishikawa, T. Aikawa, S. Watanabe and S. Saito, Org. Lett., 2006, 8, 3881-3884; b) M. J. Fan, G. Q. Li and Y. M. Liang, Tetrahedron., 2006, 62, 6782-6791; c) R. K. Kawade, C. C. Tseng and R. S. Liu, Chem. Eur. J., 2014, 20, 13927-13931; d) P. Sharma and R. S. Liu, Chem. Eur. J., 2015, 21, 4590-4594; e) Z. H. Zhang, L. Yin and Y. M. Wang, Adv. Synth. Catal., 2006, 348, 184-190.
    [12]. Gold-catalyzed [4+2]-annulations of α-oxo alkynes with alkenes, nitriles and carbonyl compounds could deliver stable annulation products, see: a) R. L. Sahani and R. S. Liu, Chem. Commun., 2016, 52, 7482-7485; b) S. N. Karad, W. K. Chung and R. S. Liu, Chem. Commun., 2015, 51, 13004-13007; c) S. N. Karad and R. S. Liu, Chem. Sci., 2015, 6, 5964-5968; d) D. B. Huple, S. Ghorpade and R. S. Liu, Adv. Syn. Catal., 2016, 358, 1348-1367.
    [13]. α-Imino carboanions reacted with aldehydes to give C-alkylation products; see selected examples: a) F. E. Henoch, K. G. Hampton, and C. R. Hauser, J. Am. Chem. Soc., 1969, 91, 676–681; b) M. F. Lipton and R. H. Shapiro, J. Org. Chem., 1978, 43, 1409-1413; c) D. Lim and D. M. Coltart, Angew. Chem., Int. Ed., 2008, 47, 5207-5210; d) S. B. J. Kan, R. Matsubara, F. Berthiol and S. Kobayashi, Chem. Commun., 2008, 6354-6356; e) R. Matsubara, K. Masuda, J. Nakano and S. Kobayashi, Chem. Commun., 2010, 46, 8662-8664; f) R. Matsubara, F. Berthiol and S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 1804-1805.
    [14]. For gold-catalyzed oxidations of alkynes with O2, see selected examples: a) L. Huang, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 4808-4813; b) A. S. K. Hashmi, M. C. B. Jaimes, A. M. Schuster and F. Rominger, J. Org. Chem., 2012, 77, 6394-6408; c) Y. Liu, F. Song and S. Guo, J. Am. Chem. Soc., 2006, 128, 11332-11333; d) X. Jin, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed., 2014, 53, 455-458; e) Y. Shao, Z. Wu, C. Miao and L. Liu, J. Organomet. Chem., 2014, 767, 60-64.
    [15]. T. Tang, X. D. Fei, Z. Y. Ge, Z. Chen, Y. M. Zhu and S. J. Ji, J. Org. Chem., 2013, 78, 3170-3175.
    [16]. J. M. Tang, T. A, Liu and R. S. Liu, J. Org. Chem., 2008, 73, 8479-8483.
    Chapter II :
    [1]. Selected reviews: a) Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocyclic and Natural Products, ed. A. Padwa and W. H. Pearson, Wiley, New York, 2002; b) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887-2902; c) K. V. Gothelf and K. A. Jorgensen, Chem. Rev., 1998, 98, 863-910; d) F. Cardona and A. Goti, Angew. Chem., Int. Ed., 2005, 44, 7832-7835.
    [2]. a) T. B. Nguyen, A. Martel, R. Dhai and G. Dujardin, Org. Lett., 2008, 10, 4493-4496; b) E. Winterfeldt, W. Krohn and H. Stracke, Chem. Ber., 1969, 102, 2346-2361; c) A. Pernet-Poil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze and P. Y. Chavant, Tetrahedron: Asymmetry, 2006, 17, 1969-1974; d) F. Cantagrel, S. Pinet, Y. Gimbert and P. Y. Chavant, Eur. J. Org. Chem., 2005, 2694-2701; e) J. Y. Pfeiffer and A. M. Beauchemin, J. Org. Chem., 2009, 74, 8381-8383.
    [3]. Reviews for gold-catalyzed cycloaddition reactions: see: a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180-3211; b) M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J., 2014, 9, 3066-3082; c) F. Lopez and J. L. Mascarenas, Chem. Soc. Rev., 2014, 43, 2904-2915.
    [4]. H. Liu, Y. Zhao, Z. Li, H. Jia, C. Zhang, Y. Xiao and H. Guo, RSC Adv., 2017, 7, 29515-29519.
    [5]. K. B. Jensen, R. G. Hazell and K. A. Jørgenson, J. Org. Chem., 1999, 64, 2353-2360.
    [6]. B. T. Worrell, J. A. Malik and V. V. Fokin, Science, 2013, 340, 457-460.
    [7]. a) S. Santoro, R. Z. Liao, T. Marcelli, P. Hammar and F. Himo, J. Org. Chem., 2015, 80, 2649-2660; b) T. C. Malig, D. Yu and J. E. Hein, J. Am. Chem. Soc., 2018, 140, 9167-9173
    [8]. a) Y. Wang, L. W. Ye and L. Zhang, Chem. Commun., 2011, 47, 7815-7817; b) Y. Wang, L. Liu and L. Zhang, Chem. Sci., 2013, 4, 739-746.
    [9]. D. B. Huple, B. D. Mokar and R. S. Liu, Angew. Chem., Int. Ed., 2015, 54, 14924-14928.
    [10]. B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem., Int. Ed., 2016, 55, 11892-11896.
    [11]. A. S. K. Raj, B. S. Kale, B. D. Mokar and R. S. Liu, Org. Lett., 2017, 19, 5340-5343.
    [12]. Metal-catalyzed reactions of alkynes with aldehyde-derived nitrones, see: a) H. S. Yeom, Y. Lee, J. E. Lee and S. Shin, Org. Biomol. Chem., 2009, 7, 3733-4752; b) A. Mukherjee, R. B. Dateer, R. Chaudhari, S. Bhunia, S. N. Karad and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 15372-15375; c) S. Bhunia, C. J. Chang and R. S. Liu, Org. Lett., 2012, 14, 5522-5525.
    [13]. Reviews for gold-catalyzed N, O-functionalizations of alkynes; see D. B. Huple, S. Ghorpade and R. S. Liu, Adv. Synth. Catal., 2016, 358, 1348-1367.
    [14]. a) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman and P. Sharma, RSC Adv., 2015, 5, 15233-15266; b) S. Thirumalarirajan, B. M. Pearce and A. Thompson, Chem. Commun., 2010, 46, 1797-1812; c) T. B. Kumar, C. Sumanth, S. Vaishaly, M. S. Rao, K. B. C. Sekhar, C. L. T. Meda, A. Kandale, D. Rambabu, G. R. Krishna, C. M. Reddy, K. S. Kumar, K. V. L. Parsa and M. Pal, Bioorg. Med. Chem., 2012, 22, 5639-5647; d) J. C. P. Reyes and D. Romo, Angew. Chem., Int. Ed., 2012, 51, 6870-6873; e) H. Fan, J. Peng, M. T. Hamann and J. F. Hu, Chem. Rev., 2008, 108, 264-287; f) D. S. Kim, Y. S. Seo and C. H. Jun, Org. Lett., 2015, 17, 3842-3845; g) M. Biava, G. C. Porretta, D. Deidda, R. Pompei, A. Tafi and F. Manetti, Bioorg. Med. Chem., 2004, 12, 1453-1458.
    [15]. For gold-catalyzed aza-Nazarov cyclizations, see: a) S. K. Pawar, R. L. Sahani and R. S. Liu, Chem. Eur. J., 2015, 21, 10843-10850; b) R. L. Sahani and R. S. Liu, Angew. Chem., Int. Ed., 2017, 56, 1026-1030; c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, 6, 1265-1271; d) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 794-797; e) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 12688-12692.
    [16]. For gold-catalyzed intermolecular reactions of N-hydroxyamines with allenes, see: a) R. K. Kawade, P. H. Huang, S. N. Karad and R. S. Liu, Org. Biomol. Chem., 2014, 12,737-740; b) J. M. Chen, C. J. Chang, Y. J. Ke and R. S. Liu, J. Org. Chem., 2014, 79, 4306-4311.
    [17]. For gold catalyzed reactions of 1,4-diyn-4-ol derivatives, see: T. Wang, S. Shi, M. M. Hansman, E. Rettenmeier, M. Rudolph and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2014, 53, 3715-3719.
    [18]. a) F. G. Bordwell and W. Z. Liu, J. Am. Chem. Soc., 1996, 118, 8777-8781; b) S. Ung, A. Falguieres, A. Guy and C. Ferroud, Tetrahedron Letters., 2005, 46, 5913-5917; c) Y. Wang, L. Liu and L. Zhang, Chem. Sci., 2013, 4, 739-746.
    [19]. K. Tanaka, T. Osaka, K. Noguchi and M. Hirano, Org. Lett., 2007, 9, 1307-1310.
    [20]. D. Nishikawa, K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 15620-15623.
    Chapter III :
    [1]. For reviews of α-oxo gold carbene, see a) L. Zhang, Acc. Chem. Res., 2014, 47, 877-888; b) H. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966-977; c) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677-698; d) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506-516; e) J. Xiao and X. Li, Angew. Chem. Int. Ed., 2011, 50, 7226-7236; f) Z. Zheng, Z. Wang, Y. Wang and L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4458; g) J. Schießl, P. M. Stein, J. Stirn, K. Emler, M. Rudolph, F. Rominger and A. S. K. Hashmi, Adv. Synth. Catal., 2019, 361, 725-738.
    [2]. a) D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem. Int. Ed., 2011, 50, 6911-6914; b) D. Qian and J. Zhang, Chem. Commun., 2011, 47, 11152-11154; c) K. Wang and L. Zhang, Org. Chem. Front., 2014, 1, 34-38; d) K. Ji, Z. Zheng, Z. Wang and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 1245-1249; e) D. Qian, H. Hu, F. Liu, B. Tang, W. Ye, Y. Wang and J. Zhang, Angew. Chem. Int. Ed., 2014, 53, 13751-13755; f) K. B. Wang, R. Q. Ran, S. D. Xiu and C. Y. Li, Org. Lett., 2013, 15, 2374-2377.
    [3]. L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 3258-3259; b) L. Ye, W. He and L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550-8551; c) S. Bhunia, S. Ghorpade, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2012, 51, 2939-2942; d) L. Ye, W. He and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 3236-3239; e) G. Henrion, T. E. J. Chavas, X. L. Goff and F. Gagosz, Angew. Chem. Int. Ed., 2013, 52, 6277-6282; f) R. K. Kawade and R. S. Liu, Org. Lett., 2013, 15, 4094-4097; g) B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2016, 55, 11892-11896; h) G. Li and L. Zhang, Angew. Chem. Int. Ed., 2007, 46, 5156-5159; i) Z. Zheng and L. Zhang, Org. Chem. Front., 2015, 2, 1556-1560; j) Y. Wang, Z. Zheng and L. Zhang, J. Am. Chem. Soc., 2015, 137, 5316-5319; k) F. Sanchez-Cantalejo, J. D. Priest and P. W. Davice, Chem. Eur. J., 2018, 24, 17215-17219; l) L. Li, C. Shu, B. Zhou, Y. F. Yu, X. Y. Xiao and L. W. Ye, Chem. Sci., 2014, 5, 4057-4064; m) C. Shu, L. Li, X. Y. Xiao, Y. F. Yu, Y. F. Ping, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 8689-8692; n) C. Shu, L. Li, Y. F. Yu, S. Jiang and L. W. Ye, Chem. Commun., 2014, 50, 2522-2525; o) F. Pan, S. Liu, C. Shu, R. K. Lin, Y. F. Yu, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 10726-10729.
    [4]. a) R. B. Dateer, K. Patil and R. S. Liu, Chem. Commun., 2012, 48, 7200-7202; b) D. B. Huple, S. Ghorpade and R. S. Liu, Chem. Eur. J., 2013, 19, 12965-12969; c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc., 2012, 134, 17412-17415; d) W. He, C. Li and L. Zhang, J. Am. Chem. Soc., 2011, 133, 8482-8485; e) L. Wang, X. Xie and Y. Liu, Angew. Chem. Int. Ed., 2013, 52, 13302-13306; f) A. M. Jadhav, S. Bhunia, H. Y. Liao and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 1769- 1771; g) H. S. Yeom, J. E. Lee and S. Shin, Angew. Chem. Int. Ed., 2008, 47, 7040-7043.
    [5]. a) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo and L. Zhang, J. Am. Chem. Soc., 2013, 135, 8512-8524; b) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160-4161; c) X. Yao, T. Wang, X. Zhang, P. Wang, B. Zhang, J. Wei and Z. Zhang, Adv. Synth. Catal., 2016, 358, 1534-1539; d) K. Jia and L. Zhang, Adv. Synth. Catal., 2018, 360, 647-651; e) S. K. Pawar, C. D. Wang, S. Bhunia, A. M. Jadhav and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 7559-7563; f) A. S. K. Hashmi, T. Wang, S. Shi and M. J. Rudolph, Org. Chem., 2012, 77, 7761-7767; g) M. Xu, T. T. Ren and C. Y. Li, Org. Lett., 2012, 14, 4902-4905; h) S. Ghorpade, M. D. Su and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 4229-4234; i) C. W. Li, K. Patil, G. Y. Lin, S. M. A. Sohel, H. H. Hung and R. S. Liu, Angew. Chem. Int. Ed., 2010, 49, 9891-9894.
    [6]. a) S. M. A. Sohel and R. S. Liu, Chem. Soc. Rev., 2009, 38, 2269-2281; b) A. Furstner and P. W. Davies, Angew. Chem. Int. Ed., 2007, 46, 3410-3449; c) N. D. Shapiro and F. D. Toste, Synlett., 2010, 5, 675-691.
    [7]. R. Liu, G. N. W. McPherson, Z. Y. Yang, X. Zhou, W. Song, I. A. Guzei, X. Xu and W. Tang, J. Am. Chem. Soc., 2013, 135, 8201-8204.
    [8]. P. Nosel, L. N. D. S. Comprido, T. Lauterbach, M. Rudolph, F. Rominger and A. S. K. Hashmi, J. Am. Chem. Soc., 2013, 135, 15662-15666.
    [9]. a) W. Rao, M. J. Koh, D. Li and H. Chan, J. Am. Chem. Soc., 2013, 135, 7926-7932; b) W. Rao and P. W. H. Chao, Chem. Eur. J., 2014, 20, 713-718; c) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chao, Org. Lett., 2015, 17, 4176-4179.
    [10]. a) C. Shu, Y. H. Wong, C. H. Shen, P. P. Ruan, X. Lu and L. W. Ye, Org. Lett., 2016, 18, 3254-3257; b) S. K. Pawar, R. L. Sahani and R. S. Liu, Chem. Eur. J., 2015, 21, 10843-10850; c) C. Shu, Y. H. Wang, B. Zhou, X. L. Li, Y. F. Ping, X. Lu and L. W. Ye, J. Am. Chem. Soc., 2015, 137, 9567-9570; d) W. B. Shen, Q. Sun, L. Li, X. Liu, B. Zhou, J. Z. Yan, X. Lu and L. W. Ye, Nat. Commun., 2017, 8, 1748; e) Z. Y. Yan, Y. Xiao and L. Zhang, Angew. Chem. Int. Ed., 2012, 51, 8624-8627; f) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 8358-8362; g) L. Zhu, Y. Yu, Z. Mao and X. Huang, Org. Lett., 2015, 17, 30-33; h) R. J. Reddy, M. P. B. Jones and P. W. Davices, Angew. Chem. Int. Ed., 2017, 56, 13310-13313; i) P. W. Davices, A. Cremonesi and L. Dumitrescu, Angew. Chem. Int. Ed., 2011, 50, 8931-8935; j) E. Chatzopoulou and P. W. Davices, Chem. Commun., 2013, 49, 8617-8619.
    [11]. For platinum or gold catalyzed reactions of isoxazole with alkynes, see: a) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu and L. W. Ye, Angew. Chem. Int. Ed., 2017, 56, 605-609; b) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 129, 1046-1050; c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, 6, 1265-1271.
    [12]. For gold catalyzed reactions of anthranil with alkynes, see: a) H. Jin, L. Huang, J. Xie, M. Rudolpb, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797; b) M. S. H. Jin, M. S. B. Tian, M. S. X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692; c) R. D. Kardile, B. S. Kale, P. Sharma and R. S. Liu, Org. Lett., 2018, 20, 3806-3809; d) H. C. Hsieh, K. C. Tan, A. S. K. Raj and R. S. Liu, Chem. Commun., 2019, 55, 1979-1982; e) R. S. Liu, M. Skaria, S. A. More, M. J. Cheng and T. C. Kuo, Chem. Eur. J., 2019, 26, 3600-3608; f) Z. Zheng, H. Jin, K. Sekine, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2018, 57, 6935-6939; g) Z. Zeng, H. Jin, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2018, 57, 16549-16553; h) M. H. Tsai, C. Y. Wang, A. S. K. Raj and R. S. Liu, Chem. Commun., 2018, 54, 10866-10869; i) M. D. Patil and R. S. Liu, Org. Biomol. Chem., 2019, 17, 4452-4455; j) L. Song, X. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Chem. Commun., 2019, 55, 9007-9010; k) M. Skaria, P. Sharma and R. S. Liu, Org. Lett., 2019, 21, 2876-2879; l) R. R. Sing, M. Skaria, L. Y. Chen, M. J. Cheng and R. S. Liu, Chem. Sci., 2019, 10, 1201-1206; m) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736-12740.
    [13]. a) J. R. Manning and H. M. L. Davies, Tetrahedron., 2008, 64, 6901-6908; b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602-8603; c) B. D. Mokar, P. D. Jadhav, Y. B. Pandit and R. S. Liu, Chem Sci., 2018, 9, 4488-4492.
    [14]. a) D. Wang, J. Hu, J. Zhao, M. Shen, Y. Wang and P. Yu, Tetrahedron., 2018, 74, 4100-4110; b) K. Chen, X. Y. Tang and M. Shi, Chem. Commun., 2016, 52, 1967-1970; c) H. Zhao, Y. Xing, P. Lu and Y. Wang, Chem. Eur. J., 2016, 22, 15144-15150; d) B. D. Lee, Z. Li, K. J. French, Y. Zhuang, Z. Xia and C. D. Smith, J. Med. Chem., 2004, 47, 1413-1422; e) L. Fan, M. Liu, Y. Ye and G. Yin, Org. Lett., 2017, 19, 186-189; f) P. T. Parvatkar and M. S. Majik, RSC Adv., 2014, 4, 22481-22486; g) C. Challa, J. Ravindran, M. M. Konai, S. Varughese, J. Jacb, B. S. D. Kumar, J. Haldar and R. S. Lankalapalli, ACS Omega., 2017, 2, 5187-5195.
    [15]. Gold and rhodium carbenes have high reactivity towards anthranils or isoxazoles; see ref. [12c], [12l] and selected examples: a) B. D. Mokar, P. D. Jadhav, Y. B. Pandit and R. S. Liu, Chem. Sci., 2018, 9, 4488-4492; b) J. R. Manning and H. M. L. Davices, Tetrahedron., 2008, 64, 6901-6908; c) J. R. Manning and H. M. L. Davices, J. Am. Chem. Soc., 2008, 130, 8602-8603.
    [16]. X. Nie, G. Wang, J. Org. Chem., 2006, 71, 4734-4741.
    [17]. a) compound III-1h and III-6a : R. Liu, G. N. Winston-McPherson, Z. Y. Yang, X. Zhou, W. Song, L. A. Guzei, X. Xu and W. Tang, J. Am. Chem. Soc., 2013, 135, 8201-8204; b) B. DeBoef, W. R. Counts and S. R. Gilbertson, J. Org. Chem., 2007, 72, 799-804.
    [18]. a) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736-12740; b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692; c) H. Jin, L. Huang, J. Xie, M.Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797; d) J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951-4954.
    [19]. a) compound III-6c : N. Ghosh, S. Nayak and A. K. Sahoo, Chem. Eur. J., 2013, 19, 9428-9433; b) compound III-6d : B. Prabagar, S. Nayak, R. Prasad and A. K. Sahoo, Org. Lett., 2016, 18, 3066-3069.
    Chapter IV :
    [1]. For reviews of α-oxo gold carbine, see: a) L. Zhang. Acc. Chem. Res., 2014, 47, 877-888; b) H. S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966-977; c) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677-698; d) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506-516; e) J. Xiao and X. Li, Angew. Chem. Int. Ed., 2011, 50, 7226-7236.
    [2]. a) A. M. Jadhav, S. Bhunia, H. Y. Liao and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 1769-1771; b) D. B. Huple, S. Ghorpade and R. S. Liu, Chem. Eur. J., 2013, 19, 12965-12969; c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc., 2012, 134, 17412-17415; d) W. He, C. Li and L. Zhang, J. Am. Chem. Soc., 2011, 133, 8482-8485; e) H. S. Yeom, J. E. Lee and S. Shin, Angew. Chem. Int. Ed., 2008, 47, 7040-7043; f) L. Wang, X. Xie and Y. Liu, Angew. Chem. Int. Ed., 2013, 52, 13302-13306.
    [3]. a) L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 3258-3259; b) L. Ye, W. He and L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550-8551; c) S. Bhunia, S. Ghorpade, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2012, 51, 2939-2942; d) L. Ye, W. He and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 3236-3239; e) G. Henrion, T. E. J. Chavas, X. L. Goff and F. Gagosz, Angew. Chem. Int. Ed., 2013, 52, 6277-6282; f) R. K. Kawade and R. S. Liu, Org. Lett., 2013, 15, 4094-4097; g) B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2016, 55, 11892-11896; h) G. Li and L. Zhang, Angew. Chem. Int. Ed., 2007, 46, 5156-5159; i) Z. Zheng and L. Zhang, Org. Chem. Front., 2015, 2, 1556-1560.
    [4]. a) D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem. Int. Ed., 2011, 50, 6911-6914; b) D. Qian and J. Zhang, Chem. Commun., 2011, 47, 11152-11154; c) K. Ji and L. Zhang, Org. Chem. Front., 2014, 1, 34-38; d) K. Ji, Z. Zheng, Z. Wang and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 1245-1249; e) D. Qian, H. Hu, F. Liu, B. Tang, W. Ye, Y. Wang and J. Zhang, Angew. Chem. Int. Ed., 2014, 53, 13751-13755; f) K. B. Wang, R. Q. Ran, S. D. Xiu and C. Y. Li, Org. Lett., 2013, 15, 2374-2377.
    [5]. a) R. L. Sahani, M. D. Patil, S. B. Wagh and R. S. Liu, Angew. Chem. Int. Ed., 2018, 57, 14878-14882; b) R. L. Sahani and R. S. Liu, ACS Catal., 2019, 9, 5890-5896; c) H. Wei, M. Bao, K. Dong, L. Qiu, B. Wu, W. Hu and X. Xu, Angew. Chem. Int. Ed., 2018, 57, 17200-17204; d) Z. Yu, H. Qiu, L. Liu and J. Zhang, Chem. Commun., 2016, 52, 2257-2260; e) B. Ma, Z. Wu, B. Huang, L. Liu and J. Zhang, Chem. Commun., 2016, 52, 9351-9354; f) S. B. Wagh, P. Sharma, M. D. Patil and R. S. Liu, Org. Chem. Front., 2019, 6, 226-230; g) S. B. Wagh, R. R. Singh, R. L. Sahani and R. S. Liu, Org. Lett., 2019, 21, 2755-2758.
    [6]. a) P. Sharma, R. R. Singh, S. S. Giri, L. Y. Chen, M. J. Cheng and R. S. Liu, Org. Lett., 2019, 21, 5475-5479; b) Y. Zheng, J. Zhang, X. Cheng, X. Xu and L. Zhang, Angew. Chem. Int. Ed., 2019, 58, 5241-5245.
    [7]. B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo and L. Zhang, J. Am. Chem. Soc., 2013, 135, 8512-8524; b) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160-4161; c) X. Yao, T. Wang, X. Zhang, P. Wang, B. Zhang, J. Wei and Z. Zhang, Adv. Synth. Catal., 2016, 358, 1534-1539; d) K. Ji and L. Zhang, Adv. Synth. Catal., 2018, 360, 647-651; e) S. K. Pawar, C. D. Wang, S. Bhunia, A. M. Jadhav and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 7559-7563; f) A. S. K. Hashmi, T. Wang, S. Shi and M. Rudolph, J. Org. Chem., 2012, 77, 7761-7767; g) M. Xu, T. T. Ren and C. Y. Li, Org. Lett., 2012, 14, 4902-4905; h) S. Ghorpade, M. D. Su and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 4229-4234; i) C. W. Li, K. Pati, G. Y. Lin, S. M. A. Sohel, H. H. Hung and R. S. Liu, Angew. Chem. Int. Ed., 2010, 49, 9891-9894.
    [8]. G. Evano, A. Coste and K. Jouvin, Angew. Chem. Int. Ed., 2010, 49, 2840-2859.
    [9]. For recent reviews on the chemistry of ynamides, see: a) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064-5106; b) G. Evano, K. Jouvin and A. Coste, Synthesis, 2013, 45, 17-26; c) X. N. Wang, H. S. Yeom, L. C. Fang, S. He, Z. X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560-578.
    [10]. For recent reviews on ynamide reactivity, see: a) F. Pan, X. L. Li, X. M. Chen, C. Shu, P. P. Ruan, C. H. Shen, X. Lu and L. W. Ye, ACS Catal., 2016, 6, 6055-6062; b) F. Pan, C. Shu and L. W. Ye, Org. Biomol. Chem., 2016, 14, 9456-9465; c) G. Evano, C. Theunissen and M. Lecomte, Aldrichimica Acta., 2015, 48, 59-70; d) X. N. Wang, H. S. Yeom, L. C. Fang, S. He, Z. X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560-578; e) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064-5106; f) G. Evano, A. Coste and K. Jouvin, Angew. Chem. Int. Ed., 2010, 49, 2840-2859.
    [11]. a) K. C. M. Kurtz, R. P. Hsung and Y. Zhang, Org. Lett., 2006, 8, 231-234; b) H. Li, R. P. Hsung, K. A. DeKorver and Y. Wei, Org. Lett., 2010, 12, 3780-3783.
    [12]. S. Kramer, K. Dooleweerdt, A. T. Lindhardt, M. Rottlander and T. Skrydstrup, Org. Lett., 2009, 11, 4208-4211.
    [13]. L. Li, B. Zhou, Y. H. Wang, C. Shu, Y. F. Pan, X. Lu and L. W. Ye, Angew. Chem. Int. Ed., 2015, 54, 8245-8249.
    [14]. N. Ghosh, S. Nayak and A. K. Sahoo, Chem. Eur. J., 2013, 19, 9428-9433.
    [15]. a) F. Pan, C. Shu and L. W. Ye, Org. Biomol. Chem., 2016, 14, 9456-9465; b) C. M. Wang, L. J. Qi, Q. Sun, B. Zhou, Z. X. Zhang, Z. F. Shi, S. C. Lin, X. Lu, L. Gong and L. W. Ye, Green Chem., 2018, 20, 3271-3278; c) F. Pan, S. Liu, C. Shu, R. K. Lin, Y. F. Yu, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 10726-10729; d) Y. C. Hsu, S. A. Hsieh and R. S. Liu, Chem. Eur. J., 2019, 25, 5288-5297; e) Q. Zhao, D. F. L. Rayo, D. Campeau, M. Daenen and F. Gagosz, Angew. Chem. Int. Ed., 2018, 57, 13603-13607; f) Y. Tokimizu, M. Wieteck, M. Rudolph, S. Oishi, N. Fujii, A. S. K. Hashmi and H. Ohno, Org. Lett., 2015, 17, 604-607.
    [16]. N. Zheng, Y. Y. Chang, L. J. Zhang, J. X. Gong and Z. Yang, Chem. Asian. J., 2016, 11, 371-375.
    [17]. J. Kim, Y. Ohk, S. H. Park, Y. Jung and S. Chang, Chem. Asian J., 2011, 6, 2040-2047.
    [18]. C. Shu, Y. H. Wang, B. Zhou, X. L. Li, Y. F. Ping, X. Lu and L. W. Ye, J. Am. Chem. Soc., 2015, 137, 9567-9570.
    [19]. For gold-catalyzed reactions of 1,3-diyn-1-amides or 1,3-diynes, see: a) J. Liu, P. Chakraborty, H. Zhang, L. Zhong, Z. X. Wang and X. Huang, ACS Catal., 2019, 9, 2610-2617; b) J. Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi and H. Ohno, Angew. Chem. Int. Ed., 2017, 56, 7444-7448; c) M. Taguchi, Y. Tokimizu, S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2015, 17, 6250-6253; d) P. P. Sharp, M. G. Banwell, J. Renner, K. Lohmann and A. C. Willis, Org. Lett., 2013, 15, 2616-2619; e) S. Kramer, J. L. H. Madsen, M. Rottlander and T. Skrydstrup, Org. Lett., 2010, 12, 2758-2761.
    [20]. For the roles of the ligand and counter ion in the deactivation of the reaction, see: a) M. Kumar, J. Jasinski, G. B. Hammond and B. Xu, Chem. Eur. J., 2014, 20, 3113-3119; b) N. Mezailles, L. Richard and F. Gagosz, Org. Lett., 2005, 7, 4133-4136; c) L. Biasiolo, A. D. Zotto and D. Zuccaccia, Organometallics, 2015, 34, 1759-1765; d) P. Perez-Galan, N. Delpont, E. Herrero-Gomez, F. Maseras and A. M. Echavarren, Chem. Eur. J., 2010, 16, 5324-5332; e) M. Kumar, G. B. Hammond and B. Xu, Org. Lett., 2014, 16, 3452-3455; f) N. Salvi, L. Belpassi, D. Zuccaccia, F. Tarantelli and A. Macchioni, J. Organomet. Chem., 2010, 695, 2679-2686; g) G. Ciancaleoni, L. Belpassi, F. Tarantelli, D. Zuccaccia and A. Macchioni, Dalton Trans., 2013, 42, 4122-4131.
    [21]. A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 15372-15375.
    [22]. For 1,3-migrations of metal alkynylcarbenes, see the review: D. Lee and M. Kim, Org. Biomol. Chem., 2007, 5, 3418-3427.
    [23]. X. Nie and G. Wang, J. Org. Chem., 2006, 71, 4734-4741.
    [24]. a) A. Hentz, P. Retailleau, V. Gandon, K. Cariou and R. H. Dodd, Angew. Chem. Int. Ed., 2014, 53, 8333-8337. b) Y. C. Hsu, S. A. Hsieh and R. S. Liu, Chem. Eur. J., 2019, 25, 5288-5297.
    [25]. a) Y. Tang, L. Shen, B. T. Dellaria and R. P. Hsung, Tetrahedron Lett., 2008, 49, 6404-6409. b) Y. Gao, G. Wu. Q. Zhou and J. Wang, Angew. Chem. Int. Ed., 2018, 57, 2716-2720.
    [26]. I. Talbi, C. Alayrac, J. Lohier, S. Touil and B. Witulski, Org. Lett., 2016, 18, 2656-2659.

    QR CODE