簡易檢索 / 詳目顯示

研究生: 陳廉凱
Lien-Kai Chen
論文名稱: 電流變液隔振墊圈在光碟機減振之應用
Applications of Electrorheological Fluid Damper to Reduce Vibration for Optical Disk Drive
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 電流變液光碟機隔振墊圈
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目標,在於探討電流變液隔振墊圈在光碟機減振之應用,電流變液是一種智慧型材料,會隨著所施加的電場而做改變,進而造成剛性與阻尼之變化,因此使用其特性來設計隔振墊圈,對於光碟機的減振會有所助益。本論文可分為三部分來看,首先利用黏彈性理論並配合動態特性實驗,進一步得到油封橡膠及電流變液的儲存能模數與損失能模數,以提供之後的分析所使用,其次利用光碟機的數學模型進行減振之分析以及參數的設計,最後再以裝有電流變液隔振墊圈之光碟機的實驗來加以驗證,並得到完整的結論。


    The aim of this research is to study the application of electrorheological fluid damper in reducing vibration of an optical-disk drive. Electrorheological fluid is an intelligent material that can change stiffness and damping by varying the electric field. Therefore, this property is employed to design an active damper to be applied to an optical-disk drive. In this thesis, the viscoelastic theory is utilized to explain dynamic behavior of rubber and electrorheological fluid. In addition, the storage modulus and loss modulus are measured by dynamic experiment and are employed to the analysis of vibrational behavior for an optical-disk drive. Moreover, the residual vibration that is generated by the unbalanced mass during high-speed rotation of the optical-disk drive supported with electrorheological fluid damper is measured. Comparing the experimental results to the theoretical ones, some phenomena are observed and disscussed.

    目錄 摘要.....................................................Ⅰ 目錄.....................................................Ⅳ 圖目錄.................................................. Ⅶ 表目錄...................................................Ⅹ 第一章 緒論..........................................1 1-1 研究動機.............................................1 1-2 文獻回顧.............................................2 1-2-1 電流變液.........................................2 1-2-2 光碟機減振.......................................5 1-3 本研究之目標與內容...................................7 第二章 高分子材料之黏彈性理論...................8 2-1 黏彈行為之力學分析...................................8 2-1-1 鬆弛現象.........................................8 2-1-2 潛變行為........................................10 2-2 線性黏彈理論........................................13 2-2-1 三維均質等向黏彈材料之本構方程式推導............13 2-2-2 材料受單軸向外力作用時之應力與應變關係式........17 2-2-3 材料受到剪切外力作用時之剪應力與簡應變關係式....19 2-3 黏彈材料在簡諧運動下之力學行為......................20 2-4 系統含圓柱型橡膠材料之動態理論推導..................25 第三章 含電流變液橡膠墊圈之動態特性研究.....31 3-1 電流變液材料之配製..................................31 3-2 動態特性實驗之儀器設備..............................32 3-3 動態特性實驗........................................35 3-3-1 混合定則........................................35 3-3-2 油封橡膠之動態特性實驗..........................37 3-3-3 含電流變液橡膠墊圈之動態特性實驗................42 第四章 系統之動態分析............................50 4-1 系統架構............................................52 4-2 運動方程式之推導....................................54 4-3 設計參數之分析......................................57 4-3-1 電場強度設計....................................57 第五章 實驗系統架構與結果討論.................60 5-1 實驗儀器設備........................................60 5-2 實驗架構............................................64 5-3 實驗結果與討論......................................67 第六章 結論與未來研究方向.......................69 參考文獻.................................................71 附錄A ...................................................74 附錄B ...................................................76 附錄C ...................................................79 附錄D ...................................................82 圖目錄 圖2-1 單軸向應變作用示意圖................................9 圖2-2 定值應變-時間關係圖.................................9 圖2-3 受到定值應變之應力-時間關係圖......................10 圖2-4 單軸向應力作用示意圖...............................11 圖2-5 定值應力-時間關係圖................................12 圖2-6 受到定值應力之應變-時間關係圖......................12 圖2-7 (a) 物體受應力之情況圖,(b) 物體受應力之分解圖.......13 圖2-8 黏彈材料受到單軸向外力作用示意圖...................18 圖2-9 黏彈材料受到純剪應力作用示意圖.....................19 圖2-10 含黏彈材料之系統示意圖............................25 圖2-11 系統運動時之自由體圖..............................25 圖3-1(a) 實驗儀器與設備實體圖.............................32 圖3-1(b) 動態特性實驗模組實體圖...........................33 圖3-2 隔振墊圈示意圖.....................................36 圖3-3 油封橡膠在不同頻率下儲存能模數的變化情形...........41 圖3-4 油封橡膠在不同頻率下損失能模數的變化情形...........41 圖3-5 系統在不同電場下的頻率響應圖.......................46 圖3-6 系統在不同電場下的頻率相位圖.......................47 圖3-7 系統在不同電場下的自然頻率變化圖...................47圖3-8 電流變液在不同頻率與不同電場下儲存能模數 的變化情形.........................................48 圖3-9 電流變液在不同頻率與不同電場下損失能模數 的變化情形.........................................48 圖3-10 隔振墊圈在不同頻率與不同電場下等效剛性係數 的變化情形........................................49 圖3-11 隔振墊圈在不同頻率與不同電場下等效阻尼係數 的變化情形........................................49 圖4-1 光學讀取模組示意圖.................................50 圖4-2 光碟片與主軸馬達系統...............................51 圖4-3 系統運動後的數學模型...............................53 圖4-4 不同電場下振動量與頻率之關係圖.....................58 圖5-1(a) 實驗儀器與設備實體圖.............................61 圖5-1(b) 實驗用光碟機模組實體圖...........................62 圖5-2 承載底座實體圖.....................................62 圖5-3 主軸馬達暨控制器...................................63 圖5-4 實驗架構示意圖.....................................64 圖5-5 自動化量測系統之人機介面 (a)參數設定頁,(b)量測輸出頁.................................................66 圖B-1 材料受到定值剪應變示意圖...........................77 圖B-2 材料受到定體積變形示意圖...........................78 表目錄 表3-1 主要參數值設定.....................................40 表5-1 實驗參數值.........................................66

    1. 楊大智,“智能材料與智能系統”,天津大學出版社。
    2. Gast, A. P., and Zukoski, C.F., 1988, “Electrorheological Fluid as Colloidal Suspensions,” Advances in Colloid and Interface Scienc, 30, pp. 153-202.
    3. Winslow, W. M., 1947, “Method and Means for Translating Electrical Impulses into Mechanical Forces,” US patent 2417850.
    4. Gandhi, M. V., Thompson, B. S., and Choi, S. B., 1989, “A New Generation of Innovative Ultra-advanced Intelligent Composite Materials Featuring Electro-Rheological Fluids: An Experimental Investigation,” Journal of Composite Materials, Vol. 23, pp. 1232 - 1255.
    5. Choi, S. B., Park, Y. K., and Kim, J. D., 1993, “Vibration Characteristics of Hollow Cantilevered Beams Containing an Electrorheological Fluid,” International Journal of Mechanical Science, Vol. 35, No. 9, pp. 757-768.
    6. Choi, S. B., and Park, Y. K., 1994, “Active Vibration Control of a Cantilevered Beams Containing an Electro-Rheological Fluid,” Journal of Sound and Vibration, Vol. 172, No. 3, pp. 428-432.
    7. Choi, S. B., Park, Y. K., and Cheong, C. C., 1996, “Active Vibration Control of Intelligent Composite Laminate Structures Incorporating and Electro-Rheological Fluid,” Journal of Intelligent Material Systems and Structures, Vol. 7, pp. 411-419.
    8. Thearle, E. L., 1950, “Automatic Dynamic Balancers (Part 1-Leblanc Balancer),” Machine Design, Vol. 22, Sept., pp. 119-124.
    9. Thearle, E. L., 1950, “Automatic Dynamic Balancers (Part 2-Ring, Pendulum, Ball Balancers),” Machine Design, Vol. 22, Oct., pp. 103-106.
    10. Kubo, S., Jinouchi, Y., Araki, Y., and Inoue, J., 1986, “Automatic Balancer (Pendulum Balancer),” Bulletin of JSME, Vol. 29, No. 249, pp. 924-928.
    11. 井上順吉(Inoue), 陣內靖介, 荒木嘉昭,中原 章, 1979,“自動平衡裝置,”日本機械論文集 (C編), 45卷, 394號, 646-652頁。
    12. B□vik, P., and H□gfors, C., 1986, “Autobalancing of Rotor,” Journal of Sound and Vibration, Vol. 111, pp. 429-440.
    13. Wierzba. P., Cao, W., Park, J., 1995, “Automatic Balancing of a Three-Dimentional Rigid Rotor System---A Washing Machine Application,” pp. 163-172.
    14. Moorhem, P., 1996, “Analytical and Experimenetal Analysis of a Self-Compensating Dynamic Balancer in a Rotating Mechanism,”
    Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 118, pp. 468-475.
    15. Rajalingham, C., Bhat, B. R., and Rakheja, S., 1998, “Automatic Balancing of Flexible Vertical Rotors Using a Guided Ball,” International Journal of Mechanical Science, Vol. 40, No. 9, pp. 825-834.
    16. Silin, R., Royzman, V., Malygin, A., Borko, I., and Tholovsky, R., 1999, “The Research into Automatic Balancing Process of Rotors with Vertical Axis of Rotation,” Tenth World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24, pp. 1734-1739.
    17. Hwang, C. H., and Chung, J., 1999, “Dynamic Analysis of an Automatic Ball Balancer with Double Races,” JSME International Journal, Series C, Vol. 42, No. 2, pp. 265-272.
    18. 陣內靖介(Jinnouchi), 荒木嘉昭, 井上順吉, 大塚芳臣, 譚青, 1993,“自動平衡裝置(Static Balancing and Transient Response of a Multi-Ball Balancer),”日本機械論文集 (C編), 59卷, 557號, 79-84頁.
    19. Aklonis, J. J., and MacKnight, W. J., 1984, “Introduction to Polymer Viscoelasticity,” Wiley, New York.
    20. Wineman, A. S., and Rajagopal, K. R., 2000, “Mechanical Response of Polymers,” Cambridge University Press.
    21. Nashif, A. D., 1985, “Vibration Damping,” Wiley, New York.
    22. 程志堅,1997,電黏性流體的動態特性量測及智慧型結構模擬,大葉大學碩士論文。
    23. 黃偉煜,1999,“創新自動平衡裝置設計”,國立清華大學碩士論文。
    24. 王俊傑,2003,“裝配滾珠型自動平衡裝置之光碟機承載底座動態分析與系統設計”,國立清華大學碩士論文。
    25. 顏永昌,2004,“滾珠型自動平衡裝置搭配雙承載底座之動態分析與系統設計”,國立清華大學碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE