簡易檢索 / 詳目顯示

研究生: 林彥儒
Lin, Yan-Ru
論文名稱: 輻照引致單晶3C碳化矽材料的微結構變化與膨脹效應之研究
Irradiation-Induced Microstructural Evolution and Swelling of 3C-SiC
指導教授: 開執中
莊偉綜
口試委員: 開執中
莊偉綜
羅聖全
黃爾文
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 147
中文關鍵詞: 碳化矽同步輻射電子顯微鏡體積膨脹離子輻照X光繞射
外文關鍵詞: 3C-SiC, Synchrotron radiation, TEM, Swelling, ion irradiation, XRD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3C結構碳化矽(3C-SiC)在高溫環境下,仍具有良好的機械性質、抗腐蝕性質與抗輻照性質,是極具潛力與備受期待的核能材料。本研究結合超高解析電子顯微鏡與同步輻射X光之單晶繞射技術,分析單晶3C碳化矽材料受矽離子輻照,引致的微結構變化與膨脹效應。各試驗樣品以5.1與7MeV Si2+離子(輻照劑量20dpa),分別於輻照溫度400、600、800、1000、1200、1350 ℃下進行輻照。

    本研究以超高解析電子顯微鏡分析輻照產生之各類缺陷,統整了碳化矽於400~1350℃間,受高劑量矽離子輻照產生之間隙原子團、差排環、Frank型式差排環、疊差環與空孔之大小與密度,進而解釋其演變情形。並利用球面像差修正掃描穿透式電子顯微鏡之環形明場拍攝技術,定位疊差環內碳、矽原子位置。同時,建構原子模型以模擬理想情況下的環形明場影像,模擬結果與實際拍攝影像相符,證實其有兩種形式的結構。分別為含有一層位移之碳/矽原子層的內置型疊差環與含有兩層位移之碳/矽原子層的外置型疊差環,兩者的堆疊分別符合碳化矽2H和4H的多晶型態。此外,也利用此技術,拍攝到啞鈴狀間隙原子與碳原子組成的間隙原子團,兩種點缺陷。

    另一方面,分析X光繞射對各類輻照引致之缺陷所造成之效應。利用同步輻射X光搭配八環繞射儀,精確的計算碳化矽各晶面之晶格膨脹造成整體體積膨脹量值,確認了CVD成長之單晶碳化矽材料受輻照後,晶體之a=b<c膨脹行為,證實此不等方向性之膨脹來自底層矽基板之壓應力。並於(002)繞射峰右側觀察到X光漫散射造成之駝峰,推測其為啞鈴狀間隙原子C+/Si+-Si<100>與C+/Si+-C<100>所引起,而啞鈴狀間隙原子與單一點缺陷為主導碳化矽於1000℃以下之晶格膨脹行為的主要缺陷型態。


    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 研究動機 1 第二章 文獻回顧 4 2.1 碳化矽的結構與命名 4 2.2 碳化矽的材料特性 5 2.3 碳化矽的製備 6 2.3.1 單晶碳化矽 6 2.3.2 碳化矽/碳化矽複合材料 7 2.3.3 碳化矽纖維 8 2.3.4 碳化矽基材 9 2.3.5 介面層 10 2.3.6 全纖維碳化矽複合材料 11 2.4 碳化矽應用於核能材料 13 2.4.1 輕水式反應器 13 2.4.2 高溫氣冷式反應器 14 2.4.3 其他先進反應器 15 2.4.4 核融合反應器 15 2.5 碳化矽材料之輻射效應 17 2.5.1 微結構變化 17 2.5.2 膨脹效應 19 第三章 實驗原理與方法 39 3.1 SRIM模擬程式計算 39 3.2 離子佈植輻照系統 40 3.2.1 加速器系統 40 3.2.2 入射離子與靶材之交互作用 41 3.3 實驗流程與條件 42 3.4 電子顯微鏡的應用 43 3.4.1 電子顯微鏡原理 43 3.4.2 電子束與物質之交互作用 44 3.4.3 穿透式電子顯微鏡(TEM) 45 3.4.4 電子槍 45 3.4.5 電子能量損失能譜儀(EELS) 47 3.4.6 掃描穿透式電子顯微鏡(STEM) 50 3.4.7 試片製備 51 3.5 X光的應用 52 3.5.1 X光繞射於材料結構分析 53 3.5.2 同步輻射X光繞射技術 54 3.5.3 掠角式X光繞射(GIXRD) 56 3.5.4 X光漫散射射(Diffuse scattering) 56 3.6 原子模型建構與模擬 58 3.6.1 CrystalKitX軟體-原子模型建構 58 3.6.2 MacTempasX軟體-原子影像模擬 59 第四章 實驗結果與討論 73 4.1 離子輻照與輻照前材料分析 73 4.2 電子顯微鏡分析 75 4.2.1 小黑點缺陷(black spot defect)與差排環(loop) 75 4.2.2 空孔(void) 78 4.2.3 內置型與外置型疊差環(stacking fault loop) 79 4.2.4 缺陷結構與影像模擬 82 4.3 X光分析 83 4.3.1 In-house X光繞射分析 83 4.3.2 同步輻射X光繞射分析 84 4.3.3 同步輻射X光漫散射分析 87 4.4 部分間隙原子於STEM-ABF影像下之形貌 89 4.5 碳化矽膨脹行為之探討 90 4.5.1 低溫膨脹區間 91 4.5.2 高溫膨脹區間 93 4.5.3 各類缺陷對X光繞射之影響 94 第五章 結論 133 第六章 未來研究方向 135 參考文獻 136

    [1]N.W. Jepps ,T.F. Page, Polytypic transformations in Silicon Carbide, 1982
    [2]W.F. Knippenberg, “Growth phenomena in silicon carbide”, Philips Research. Report, vol. 51, pp. 161-274, 1963
    [3]Y. Inomata, A. Inoue, M. Miyomo, H. Suzuki, “Relation between growth temperature and the structure of SiC crystals grown by the sublimation method”, Journal of the Ceramic Society of Japan, vol.76, pp. 313-319, 1968
    [4]F. Bechstedt, “Polytypism and Properties of Silicon Carbide”, Physica Status Solidi B , vol. 202, pp. 35, 1997
    [5]M. Mehregany, C.A. Zorman, "SiC MEMS: opportunities and challenges for applications in harsh environments", Thin Solid Films, pp. 518-524, 1999
    [6]林博文,碳化矽及其他碳化物陶瓷技術手冊(下)修訂版,第745-776頁,台灣,中華民國八十八年
    [7]J. Eid, I.G. Galben, 3C-SiC growth on Si substrates via CVD: An introduction, NOVASiC, 2008
    [8]S. Mourdikoudis , K. Simeonidis, Advanced characterization of 3C-SiC epitaxial layer by TEM and XRD pole figure, NOVASiC, 2008
    [9]K.K. Chawla, Composite Materials, 2nd edition, Springer, 1998
    [10]L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, “Silicon carbide composites as fusion power reactor structural materials”, Journal of Nuclear Materials, vol. 417, pp. 330–339, 2011
    [11]G. Newsome, “Evaluation of neutron irradiated silicon carbide and silicon carbide composites”, Journal of Nuclear Materials, vol. 371, pp. 76–89, 2007
    [12]M. Takeda, A. Urano, J. Sakamoto, Y. Imai, “Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S”, Journal of Nuclear Materials, vol. 258-263, pp. 1594-1599, 1998
    [13]H. Araki, H. Suzuki, W. Yang, S. Sato, T. Noda, “Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI”, Journal of Nuclear Materials, vol. 258-263, pp. 1540-1545, 1998
    [14]T. Ishikawa, “High-strength alkali-resistant sintered SiC fibre stable to 2200℃”, Nature, vol. 391, 6669, pp. 773, 1998
    [15]T.M. Besmann, B.W. Sheldon, R.A. Lowden, D. P. Stinton, “Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composite”, Science, vol. 253, 1991
    [16]K. Shimoda, A. Kohyama, T. Hinoki, “High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction”, Composites Science and Technology, vol. 69, pp. 1623–1628, 2009
    [17]W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, “Crack initiation and growth characteristics in SiC/SiC under indentation test”, Journal of Nuclear Materials, vol. 258-263 , pp. 1577-1581, 1998
    [18]T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, “Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique”, Journal of Nuclear Materials, vol. 258-263, pp. 1567-1571, 1998
    [19]C. A. Lewinsohn, R.H. Jones, G.E. Youngblood, C.H. Henager, “Fiber creep rate and high-temperature properties of SiC/SiC composites”, Journal of Nuclear Materials, vol. 258-263, pp. 1557-1561, 1998
    [20]T. Hinoki, L.L. Snead, Y. Katoh, A. Kohyama, R. Shinavski, “The effect of neutron-irradiation on the shear properties of SiC/SiC composites with varied interface”, Journal of Nuclear Materials, vol. 283-287, pp. 376-379, 2000
    [21]T. Nozawa, K. Ozawa, S. Kondo, T. Hinoki, Y. Katoh, L.L. Snead, A. Kohyama, “Tensile, flexural, and shear properties of neutron irradiated SiC/SiC composites with different F/M interfaces”, Journal of ASTM International, vol. 2, 2, 2005
    [22]H. Kishimoto , Y. Katoh , A. Kohyama, “Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment”, Journal of Nuclear Materials, vol. 307–311, pp. 1130–1134, 2002
    [23]T. Ishikawa, “A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air”, Science, vol. 282, pp. 1295-2697, 1998

    [24]T. Ishikawa, “SA-Tyrannohex-based Composite for High Temperature Applications”, Advances in Science and Technology, vol. 71, pp. 118-126, 2010
    [25]邱奕哲,「探討不同製程之碳化矽複合材料於高溫離子輻照環境下之空孔形成」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
    [26]K.L. Murty, I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities”, Journal of Nuclear Materials, vol. 383, pp. 189-195, 2008
    [27]W. Corwin, “U.S. Generation IV reactor integrated materials technology program”, Nuclear Engineering and Technology, vol. 38, pp. 591, 2006
    [28]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2008.
    [29]PHYSOR 2012 Advanced Reactor Concepts Workshop, ORNL, Knoxville TN, 2012
    [30]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2009
    [31]FY 2007 Ten-Year Program Plan - Appendix 1.0 ,NGNP , 2007
    [32]K. Yueh, D. Carpenter, H. Feinroth, “Clad in Clay”, Nucl Eng Int, pp. 6-14, 2010
    [33]G. Griffith , U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development, 2011
    [34]Y. Katoh, K. Ozawa, T. Hinoki, Y.B. Choi, L.L. Snead, A. Hasegawa, “Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures”, Journal of Nuclear Materials, vol. 20, pp. 416-417, 2011
    [35]L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, “Handbook on SiC properties for fuel performance modeling”, Journal of Nuclear Materials , vol. 77, pp. 329-371, 2007
    [36]Y. Katoh, T. Nozawa, L.L. Snead, K. Ozawa, H. Tanigawa, “Stability of SiC and its composites at high neutron fluence”, Journal of Nuclear Materials, vol. 5, pp. 400-417, 2011
    [37]R.H. Jones, C.H. Henager, “Subcritical crack growth processes in SiC/SiC ceramic matrix composites”, Journal of the European Ceramic Society, vol. 25, pp. 1717-1722, 2005
    [38]L.L. Snead, Y. Katoh, S. Connery, “Swelling of SiC at intermediate and highirradiation temperatures”, Journal of Nuclear Materials, vol. 367, pp. 677-684, 2007
    [39]L.H. Rovner ,G.R. Hopkins, Nuclear Technology, vol. 29, pp. 274, 1976
    [40]S. J. Zinkle, “Fusion materials science: overview of challenges and recent progress”, Phys Plasmas, vol. 12, 2005
    [41]R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, “Promise and challenges of SiCf/SiC composites for fusion energy applications”, Journal of Nuclear Materials, vol. 307, pp. 1057–1072, 2002
    [42]Y. Katoh, L. L. Snead, I. Szlufarska, W. J. Weber, “Radiation effects in SiC for nuclear structural applications”, Current Opinion in Solid State and Materials Science, vol. 16, pp. 143–152, 2012
    [43]陳建宏,「核融合反應器環境下Hi-Nicalon Type-S碳化矽複合材料之輻射效應研究」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
    [44]何宗融,「單晶碳化矽在高溫矽離子輻照下之微結構變化」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
    [45]S. Kondo, Y. Katoh, L.L. Snead, “Cavity swelling and dislocation evolution in SiC at very high temperatures”, Journal of Nuclear Materials, vol. 386–388, pp. 222–226, 2009
    [46]何雋禹,「利用超高解析電鏡分析單晶3C-碳化矽與SA-Tyrannohex全纖維複合材在高溫矽離子輻照下之缺陷」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
    [47]T. Sawabe, M. Akiyoshi, K. Ichikawa, K. Yoshida, T. Yano, “Microstructure of heavily neutron-irradiated SiC after annealing up to 1500℃”, Journal of Nuclear Materials, vol. 386–388, pp. 333–337, 2009
    [48]T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, “X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9 ×1027 n/m2”, Journal of Nuclear Materials, vol. 253, pp. 78–86, 1998
    [49]S. Kondo, Y. Katoh, L.L. Snead, “Microstructural defects in SiC neutron irradiated at very high temperatures “, Journal of Nuclear Materials , vol. 382, pp.160–169, 2008
    [50]Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures”, Journal of Nuclear Materials, vol. 351, pp. 228-240, 2006
    [51]S. Kondo, Y. Katoh, L.L. Snead, “Analysis of grain boundary sinks and interstitial diffusion in neutron-irradiated SiC”, Physical Review B, vol. 83, 075202, 2011
    [52]Y. Katoh, S. Kondo, L.L. Snead, “Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures”, Journal of Nuclear Materials, vol. 382, pp. 170–175, 2008
    [53]F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, “Ab initio and empirical-potential studies of defect properties in 3C-SiC”, Physical Review B, vol. 64, 245208, 2001
    [54]F. Gao, W.J. Weber, “Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide”, Applied Physics Letters, vol. 82, pp. 6, 2002
    [55]F. Gao, E.J. Bylaska, W.J. Weber, “Native defect properties in B-SiC: Ab initio and empirical potential calculations”, Nuclear Instruments and Methods in Physics Research B, vol. 180, pp. 286-292, 2001
    [56]R.J. Price, “Effects of fast-neutron irradiation on pyrolytic silicon carbide”,
    Journal of Nuclear Materials, vol. 33, pp. 17–22, 1969
    [57]H. Miyazaki, T. Suzuki, T. Yano, T. Iseki, “Effects of thermal annealing on the macroscopic dimension and lattice parameter of heavily neutron-irradiated silicon carbide”, Journal of Nuclear Science and Technology, vol. 29, 7, pp. 656-663, 1992
    [58]J.F. Ziegler, “The Stopping of Energetic Light Ions in Elemental Matter”, Journal of Applied Physics, vol. 85, pp. 1249-1272, 1999
    [59]J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids , Pergamon Press, New York, 1985
    [60]Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976
    [61]陳力俊,材料電子顯微鏡學,國科會精儀中心,新竹,中華民國八十三年
    [62]汪建民、杜正恭,材料分析,中國材料科學學會,中華民國八十七年
    [63]N. Bonnet, C. Coliex, C. Mory, M. Tence, Scanning Microscopy 2 (Suppl.) , 1988
    [64]A. Berger, J. Mayer, H. Kohl, “Detection limits in elemental distribution images produced by energy filtering TEM: case study of grain boundaries in Si3N4Original Research Article”, Ultramicroscopy, vol. 55, pp. 101-112, 1994
    [65]P. A. Crozier, R.F. Egerton, “Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum”, Ultramicroscopy, vol. 27, pp. 9-18, 1988
    [66]D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York and London, 1996
    [67]H. Shuman, C.F. Chang, A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy, vol. 19, pp. 121-134, 1986
    [68]鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局,中華民國一0一年
    [69]JEM-ARM200F INSTRUCTIONS, JEOL, 2012
    [70]P.E. Batson, “Hydrogen brightens up”, Nature Materials, vol. 10, pp. 270, 2011
    [71]F. Krumeich, E. Muller, R.A. Wepf, “Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy”, Micron, vol. 43, pp. 1-14, 2013
    [72]E. Okunishi, H. Sawada, Y. Kondo, “Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM)”, Micron, vol. 43, pp. 538-544, 2012
    [73]吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會,1992
    [74]P. Willmott, An Introduction to Synchrotron Radiation, 2011
    [75]B.L. Henke, E.M. Gullikson, J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92”, Atomic Data and Nuclear Data Tables, vol. 54, 2 , pp. 181-342 ,1993
    [76]R. Kilaas, MacTempas User Manual,.
    [77]F. Gao, W.J. Weber, “Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide”, Applied Physics Letters, vol. 82, pp. 6, 2002
    [78]C. Cheng, V. Heine, R.J. Needs, “Atomic relaxation in silicon carbide polytypes”, Journal of Physics: Condensed Matter, pp. 5115, 1990
    [79]C.Y. Ho, S.C. Tsai, H.T. Lin,F.R. Chen, J.J. Kai, “Microstructural investigation of Si-ion-irradiated Single Crystal 3C-SiC and SA-Tyrannohex SiC Fiber-bonded Composite at High Temperatures”, Journal of Nuclear Materials, vol. 443, pp. 1, 2013
    [80]J. Yamasaki, S. Inamoto, Y. Nomura, H. Tamaki, N. Tanaka, “Atomic structure analysis of stacking faults and misfit dislocations at 3C-SiC/Si(0 0 1) interfaces by aberration-corrected transmission electron microscopy”, Journal of Physics D: Applied Physics, vol. 45, 494002, 2012
    [81]P. Pirouz, J.W. Yang, “Polytypic transformations in SiC: the role of TEM”, Ultramicroscopy, vol. 51, pp. 189, 1993
    [82]P. J. H. Denteneer, J. Tersoff, D. Vanderbilt, V. Vitek, “Atomic Scale Calculations in Materials Science”, MRS Symposia Proceedings, vol. 343, pp. 141, 1989
    [83]K. Karch, G. Wellenhofer, P. Pavone, U. Rössler, D. Strauch, “Structural and electronic properties of SiC polytypes”, Proceedings of the 25th International Conference on the Physics of Semiconductors, pp. 401, 1994
    [84]P. Käckell, J. Furthmüller, F. Bechstedt, “Stacking faults in group-IV crystals: An ab initio study”, Physical Review B, vol. 58, pp. 1326, 1998
    [85]H. Iwata, U. Lindefelt, S. Oberg, P.R. Briddon, “Theoretical study of planar defects in silicon carbide”, Journal of Physics: Condensed Matter, vol. 14, pp. 12733-12740, 2002
    [86]Y. Umeno, K. Yagi, H. Nagasawa, “Ab initio density functional theory calculation of stacking fault energy and stress in 3C-SiC”, Physica Status Solidi B, vol. 249, pp. 1229-1234, 2012
    [87]G.D. Samolyuk, Y.N. Osetskiy, R.E. Stoller, “Molecular Dynamics Modeling of Atomic Displacement Cascades in 3C-SiC”, Fusion Reactor Materials Program, vol. 54, ER-0313/54, 2013
    [88]J.M. Perlado, L. Malerba, A. Sanchez-Rubio, T. Diaz la Rubia, “Molecular dynamics simulation of defect production in irradiated β-SiC”, Journal of Nuclear Materials, vol. 276, pp. 235, 2000
    [89]F. Gao, W.J. Weber, R. Devanathan, “Defect production, multiple ion–solid interactions and amorphization in SiC”, Nuclear Instruments and Methods in Physics Research B, vol. 191, pp. 487–496, 2002
    [90]R.E. Stoller, G.E. Ice,R.I. Barabash, “Reciprocal space imaging of ridiation-induced defects in BCC Fe”, ORNL, 2001
    [91]A. Boulle, D. Chaussende, L. Latu-Romain, F. Conchon, O. Masson, R. Guinebretière, “X-ray diffuse scattering from stacking faults in thick 3C-SiC single crystals”, Applied Physics Letter, vol. 89, 091902, 2006
    [92]Z. Rong, F. Gao, W. J. Weber, “Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C–SiC”, Journal of Applied Phtsics, vol. 102, 103508, 2007
    [93]T. Ung´ar , “Dislocation densities, arrangements and character from X-ray diffraction experiments” Materials Science and Engineering A, vol. 309–310, pp. 14–22, 2001
    [94]D. Dompoint, A. Boulle, I. Galben-Sandulache, D. Chaussende, L.T.M. Hoa, “Kinetics of the 3C-6H polytypic transition in 3C-SiC single crystals: A diffuse X-ray scattering study”, Journal of Applied Phtsics, vol. 110, 053508, 2011
    [95]F. Gao, W. J. Weber, M. Posselt, V. Belko,“Atomistic study of intrinsic defect migration in 3C-SiC”, Physical Review B, vol. 69, 245205, 2004
    [96]C. Jiang, D. Morgan, I. Szlufarska, ”Structures and stabilities of small carbon interstitial clusters in cubic silicon carbide”, Acta Materialia, vol. 62, pp. 162–172, 2014

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE