研究生: |
林彥儒 Lin, Yan-Ru |
---|---|
論文名稱: |
輻照引致單晶3C碳化矽材料的微結構變化與膨脹效應之研究 Irradiation-Induced Microstructural Evolution and Swelling of 3C-SiC |
指導教授: |
開執中
莊偉綜 |
口試委員: |
開執中
莊偉綜 羅聖全 黃爾文 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 147 |
中文關鍵詞: | 碳化矽 、同步輻射 、電子顯微鏡 、體積膨脹 、離子輻照 、X光繞射 |
外文關鍵詞: | 3C-SiC, Synchrotron radiation, TEM, Swelling, ion irradiation, XRD |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
3C結構碳化矽(3C-SiC)在高溫環境下,仍具有良好的機械性質、抗腐蝕性質與抗輻照性質,是極具潛力與備受期待的核能材料。本研究結合超高解析電子顯微鏡與同步輻射X光之單晶繞射技術,分析單晶3C碳化矽材料受矽離子輻照,引致的微結構變化與膨脹效應。各試驗樣品以5.1與7MeV Si2+離子(輻照劑量20dpa),分別於輻照溫度400、600、800、1000、1200、1350 ℃下進行輻照。
本研究以超高解析電子顯微鏡分析輻照產生之各類缺陷,統整了碳化矽於400~1350℃間,受高劑量矽離子輻照產生之間隙原子團、差排環、Frank型式差排環、疊差環與空孔之大小與密度,進而解釋其演變情形。並利用球面像差修正掃描穿透式電子顯微鏡之環形明場拍攝技術,定位疊差環內碳、矽原子位置。同時,建構原子模型以模擬理想情況下的環形明場影像,模擬結果與實際拍攝影像相符,證實其有兩種形式的結構。分別為含有一層位移之碳/矽原子層的內置型疊差環與含有兩層位移之碳/矽原子層的外置型疊差環,兩者的堆疊分別符合碳化矽2H和4H的多晶型態。此外,也利用此技術,拍攝到啞鈴狀間隙原子與碳原子組成的間隙原子團,兩種點缺陷。
另一方面,分析X光繞射對各類輻照引致之缺陷所造成之效應。利用同步輻射X光搭配八環繞射儀,精確的計算碳化矽各晶面之晶格膨脹造成整體體積膨脹量值,確認了CVD成長之單晶碳化矽材料受輻照後,晶體之a=b<c膨脹行為,證實此不等方向性之膨脹來自底層矽基板之壓應力。並於(002)繞射峰右側觀察到X光漫散射造成之駝峰,推測其為啞鈴狀間隙原子C+/Si+-Si<100>與C+/Si+-C<100>所引起,而啞鈴狀間隙原子與單一點缺陷為主導碳化矽於1000℃以下之晶格膨脹行為的主要缺陷型態。
[1]N.W. Jepps ,T.F. Page, Polytypic transformations in Silicon Carbide, 1982
[2]W.F. Knippenberg, “Growth phenomena in silicon carbide”, Philips Research. Report, vol. 51, pp. 161-274, 1963
[3]Y. Inomata, A. Inoue, M. Miyomo, H. Suzuki, “Relation between growth temperature and the structure of SiC crystals grown by the sublimation method”, Journal of the Ceramic Society of Japan, vol.76, pp. 313-319, 1968
[4]F. Bechstedt, “Polytypism and Properties of Silicon Carbide”, Physica Status Solidi B , vol. 202, pp. 35, 1997
[5]M. Mehregany, C.A. Zorman, "SiC MEMS: opportunities and challenges for applications in harsh environments", Thin Solid Films, pp. 518-524, 1999
[6]林博文,碳化矽及其他碳化物陶瓷技術手冊(下)修訂版,第745-776頁,台灣,中華民國八十八年
[7]J. Eid, I.G. Galben, 3C-SiC growth on Si substrates via CVD: An introduction, NOVASiC, 2008
[8]S. Mourdikoudis , K. Simeonidis, Advanced characterization of 3C-SiC epitaxial layer by TEM and XRD pole figure, NOVASiC, 2008
[9]K.K. Chawla, Composite Materials, 2nd edition, Springer, 1998
[10]L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, “Silicon carbide composites as fusion power reactor structural materials”, Journal of Nuclear Materials, vol. 417, pp. 330–339, 2011
[11]G. Newsome, “Evaluation of neutron irradiated silicon carbide and silicon carbide composites”, Journal of Nuclear Materials, vol. 371, pp. 76–89, 2007
[12]M. Takeda, A. Urano, J. Sakamoto, Y. Imai, “Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S”, Journal of Nuclear Materials, vol. 258-263, pp. 1594-1599, 1998
[13]H. Araki, H. Suzuki, W. Yang, S. Sato, T. Noda, “Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI”, Journal of Nuclear Materials, vol. 258-263, pp. 1540-1545, 1998
[14]T. Ishikawa, “High-strength alkali-resistant sintered SiC fibre stable to 2200℃”, Nature, vol. 391, 6669, pp. 773, 1998
[15]T.M. Besmann, B.W. Sheldon, R.A. Lowden, D. P. Stinton, “Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composite”, Science, vol. 253, 1991
[16]K. Shimoda, A. Kohyama, T. Hinoki, “High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction”, Composites Science and Technology, vol. 69, pp. 1623–1628, 2009
[17]W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, “Crack initiation and growth characteristics in SiC/SiC under indentation test”, Journal of Nuclear Materials, vol. 258-263 , pp. 1577-1581, 1998
[18]T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, “Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique”, Journal of Nuclear Materials, vol. 258-263, pp. 1567-1571, 1998
[19]C. A. Lewinsohn, R.H. Jones, G.E. Youngblood, C.H. Henager, “Fiber creep rate and high-temperature properties of SiC/SiC composites”, Journal of Nuclear Materials, vol. 258-263, pp. 1557-1561, 1998
[20]T. Hinoki, L.L. Snead, Y. Katoh, A. Kohyama, R. Shinavski, “The effect of neutron-irradiation on the shear properties of SiC/SiC composites with varied interface”, Journal of Nuclear Materials, vol. 283-287, pp. 376-379, 2000
[21]T. Nozawa, K. Ozawa, S. Kondo, T. Hinoki, Y. Katoh, L.L. Snead, A. Kohyama, “Tensile, flexural, and shear properties of neutron irradiated SiC/SiC composites with different F/M interfaces”, Journal of ASTM International, vol. 2, 2, 2005
[22]H. Kishimoto , Y. Katoh , A. Kohyama, “Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment”, Journal of Nuclear Materials, vol. 307–311, pp. 1130–1134, 2002
[23]T. Ishikawa, “A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air”, Science, vol. 282, pp. 1295-2697, 1998
[24]T. Ishikawa, “SA-Tyrannohex-based Composite for High Temperature Applications”, Advances in Science and Technology, vol. 71, pp. 118-126, 2010
[25]邱奕哲,「探討不同製程之碳化矽複合材料於高溫離子輻照環境下之空孔形成」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
[26]K.L. Murty, I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities”, Journal of Nuclear Materials, vol. 383, pp. 189-195, 2008
[27]W. Corwin, “U.S. Generation IV reactor integrated materials technology program”, Nuclear Engineering and Technology, vol. 38, pp. 591, 2006
[28]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2008.
[29]PHYSOR 2012 Advanced Reactor Concepts Workshop, ORNL, Knoxville TN, 2012
[30]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2009
[31]FY 2007 Ten-Year Program Plan - Appendix 1.0 ,NGNP , 2007
[32]K. Yueh, D. Carpenter, H. Feinroth, “Clad in Clay”, Nucl Eng Int, pp. 6-14, 2010
[33]G. Griffith , U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development, 2011
[34]Y. Katoh, K. Ozawa, T. Hinoki, Y.B. Choi, L.L. Snead, A. Hasegawa, “Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures”, Journal of Nuclear Materials, vol. 20, pp. 416-417, 2011
[35]L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, “Handbook on SiC properties for fuel performance modeling”, Journal of Nuclear Materials , vol. 77, pp. 329-371, 2007
[36]Y. Katoh, T. Nozawa, L.L. Snead, K. Ozawa, H. Tanigawa, “Stability of SiC and its composites at high neutron fluence”, Journal of Nuclear Materials, vol. 5, pp. 400-417, 2011
[37]R.H. Jones, C.H. Henager, “Subcritical crack growth processes in SiC/SiC ceramic matrix composites”, Journal of the European Ceramic Society, vol. 25, pp. 1717-1722, 2005
[38]L.L. Snead, Y. Katoh, S. Connery, “Swelling of SiC at intermediate and highirradiation temperatures”, Journal of Nuclear Materials, vol. 367, pp. 677-684, 2007
[39]L.H. Rovner ,G.R. Hopkins, Nuclear Technology, vol. 29, pp. 274, 1976
[40]S. J. Zinkle, “Fusion materials science: overview of challenges and recent progress”, Phys Plasmas, vol. 12, 2005
[41]R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, “Promise and challenges of SiCf/SiC composites for fusion energy applications”, Journal of Nuclear Materials, vol. 307, pp. 1057–1072, 2002
[42]Y. Katoh, L. L. Snead, I. Szlufarska, W. J. Weber, “Radiation effects in SiC for nuclear structural applications”, Current Opinion in Solid State and Materials Science, vol. 16, pp. 143–152, 2012
[43]陳建宏,「核融合反應器環境下Hi-Nicalon Type-S碳化矽複合材料之輻射效應研究」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
[44]何宗融,「單晶碳化矽在高溫矽離子輻照下之微結構變化」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
[45]S. Kondo, Y. Katoh, L.L. Snead, “Cavity swelling and dislocation evolution in SiC at very high temperatures”, Journal of Nuclear Materials, vol. 386–388, pp. 222–226, 2009
[46]何雋禹,「利用超高解析電鏡分析單晶3C-碳化矽與SA-Tyrannohex全纖維複合材在高溫矽離子輻照下之缺陷」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
[47]T. Sawabe, M. Akiyoshi, K. Ichikawa, K. Yoshida, T. Yano, “Microstructure of heavily neutron-irradiated SiC after annealing up to 1500℃”, Journal of Nuclear Materials, vol. 386–388, pp. 333–337, 2009
[48]T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, “X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9 ×1027 n/m2”, Journal of Nuclear Materials, vol. 253, pp. 78–86, 1998
[49]S. Kondo, Y. Katoh, L.L. Snead, “Microstructural defects in SiC neutron irradiated at very high temperatures “, Journal of Nuclear Materials , vol. 382, pp.160–169, 2008
[50]Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures”, Journal of Nuclear Materials, vol. 351, pp. 228-240, 2006
[51]S. Kondo, Y. Katoh, L.L. Snead, “Analysis of grain boundary sinks and interstitial diffusion in neutron-irradiated SiC”, Physical Review B, vol. 83, 075202, 2011
[52]Y. Katoh, S. Kondo, L.L. Snead, “Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures”, Journal of Nuclear Materials, vol. 382, pp. 170–175, 2008
[53]F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, “Ab initio and empirical-potential studies of defect properties in 3C-SiC”, Physical Review B, vol. 64, 245208, 2001
[54]F. Gao, W.J. Weber, “Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide”, Applied Physics Letters, vol. 82, pp. 6, 2002
[55]F. Gao, E.J. Bylaska, W.J. Weber, “Native defect properties in B-SiC: Ab initio and empirical potential calculations”, Nuclear Instruments and Methods in Physics Research B, vol. 180, pp. 286-292, 2001
[56]R.J. Price, “Effects of fast-neutron irradiation on pyrolytic silicon carbide”,
Journal of Nuclear Materials, vol. 33, pp. 17–22, 1969
[57]H. Miyazaki, T. Suzuki, T. Yano, T. Iseki, “Effects of thermal annealing on the macroscopic dimension and lattice parameter of heavily neutron-irradiated silicon carbide”, Journal of Nuclear Science and Technology, vol. 29, 7, pp. 656-663, 1992
[58]J.F. Ziegler, “The Stopping of Energetic Light Ions in Elemental Matter”, Journal of Applied Physics, vol. 85, pp. 1249-1272, 1999
[59]J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids , Pergamon Press, New York, 1985
[60]Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976
[61]陳力俊,材料電子顯微鏡學,國科會精儀中心,新竹,中華民國八十三年
[62]汪建民、杜正恭,材料分析,中國材料科學學會,中華民國八十七年
[63]N. Bonnet, C. Coliex, C. Mory, M. Tence, Scanning Microscopy 2 (Suppl.) , 1988
[64]A. Berger, J. Mayer, H. Kohl, “Detection limits in elemental distribution images produced by energy filtering TEM: case study of grain boundaries in Si3N4Original Research Article”, Ultramicroscopy, vol. 55, pp. 101-112, 1994
[65]P. A. Crozier, R.F. Egerton, “Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum”, Ultramicroscopy, vol. 27, pp. 9-18, 1988
[66]D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York and London, 1996
[67]H. Shuman, C.F. Chang, A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy, vol. 19, pp. 121-134, 1986
[68]鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局,中華民國一0一年
[69]JEM-ARM200F INSTRUCTIONS, JEOL, 2012
[70]P.E. Batson, “Hydrogen brightens up”, Nature Materials, vol. 10, pp. 270, 2011
[71]F. Krumeich, E. Muller, R.A. Wepf, “Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy”, Micron, vol. 43, pp. 1-14, 2013
[72]E. Okunishi, H. Sawada, Y. Kondo, “Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM)”, Micron, vol. 43, pp. 538-544, 2012
[73]吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會,1992
[74]P. Willmott, An Introduction to Synchrotron Radiation, 2011
[75]B.L. Henke, E.M. Gullikson, J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92”, Atomic Data and Nuclear Data Tables, vol. 54, 2 , pp. 181-342 ,1993
[76]R. Kilaas, MacTempas User Manual,.
[77]F. Gao, W.J. Weber, “Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide”, Applied Physics Letters, vol. 82, pp. 6, 2002
[78]C. Cheng, V. Heine, R.J. Needs, “Atomic relaxation in silicon carbide polytypes”, Journal of Physics: Condensed Matter, pp. 5115, 1990
[79]C.Y. Ho, S.C. Tsai, H.T. Lin,F.R. Chen, J.J. Kai, “Microstructural investigation of Si-ion-irradiated Single Crystal 3C-SiC and SA-Tyrannohex SiC Fiber-bonded Composite at High Temperatures”, Journal of Nuclear Materials, vol. 443, pp. 1, 2013
[80]J. Yamasaki, S. Inamoto, Y. Nomura, H. Tamaki, N. Tanaka, “Atomic structure analysis of stacking faults and misfit dislocations at 3C-SiC/Si(0 0 1) interfaces by aberration-corrected transmission electron microscopy”, Journal of Physics D: Applied Physics, vol. 45, 494002, 2012
[81]P. Pirouz, J.W. Yang, “Polytypic transformations in SiC: the role of TEM”, Ultramicroscopy, vol. 51, pp. 189, 1993
[82]P. J. H. Denteneer, J. Tersoff, D. Vanderbilt, V. Vitek, “Atomic Scale Calculations in Materials Science”, MRS Symposia Proceedings, vol. 343, pp. 141, 1989
[83]K. Karch, G. Wellenhofer, P. Pavone, U. Rössler, D. Strauch, “Structural and electronic properties of SiC polytypes”, Proceedings of the 25th International Conference on the Physics of Semiconductors, pp. 401, 1994
[84]P. Käckell, J. Furthmüller, F. Bechstedt, “Stacking faults in group-IV crystals: An ab initio study”, Physical Review B, vol. 58, pp. 1326, 1998
[85]H. Iwata, U. Lindefelt, S. Oberg, P.R. Briddon, “Theoretical study of planar defects in silicon carbide”, Journal of Physics: Condensed Matter, vol. 14, pp. 12733-12740, 2002
[86]Y. Umeno, K. Yagi, H. Nagasawa, “Ab initio density functional theory calculation of stacking fault energy and stress in 3C-SiC”, Physica Status Solidi B, vol. 249, pp. 1229-1234, 2012
[87]G.D. Samolyuk, Y.N. Osetskiy, R.E. Stoller, “Molecular Dynamics Modeling of Atomic Displacement Cascades in 3C-SiC”, Fusion Reactor Materials Program, vol. 54, ER-0313/54, 2013
[88]J.M. Perlado, L. Malerba, A. Sanchez-Rubio, T. Diaz la Rubia, “Molecular dynamics simulation of defect production in irradiated β-SiC”, Journal of Nuclear Materials, vol. 276, pp. 235, 2000
[89]F. Gao, W.J. Weber, R. Devanathan, “Defect production, multiple ion–solid interactions and amorphization in SiC”, Nuclear Instruments and Methods in Physics Research B, vol. 191, pp. 487–496, 2002
[90]R.E. Stoller, G.E. Ice,R.I. Barabash, “Reciprocal space imaging of ridiation-induced defects in BCC Fe”, ORNL, 2001
[91]A. Boulle, D. Chaussende, L. Latu-Romain, F. Conchon, O. Masson, R. Guinebretière, “X-ray diffuse scattering from stacking faults in thick 3C-SiC single crystals”, Applied Physics Letter, vol. 89, 091902, 2006
[92]Z. Rong, F. Gao, W. J. Weber, “Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C–SiC”, Journal of Applied Phtsics, vol. 102, 103508, 2007
[93]T. Ung´ar , “Dislocation densities, arrangements and character from X-ray diffraction experiments” Materials Science and Engineering A, vol. 309–310, pp. 14–22, 2001
[94]D. Dompoint, A. Boulle, I. Galben-Sandulache, D. Chaussende, L.T.M. Hoa, “Kinetics of the 3C-6H polytypic transition in 3C-SiC single crystals: A diffuse X-ray scattering study”, Journal of Applied Phtsics, vol. 110, 053508, 2011
[95]F. Gao, W. J. Weber, M. Posselt, V. Belko,“Atomistic study of intrinsic defect migration in 3C-SiC”, Physical Review B, vol. 69, 245205, 2004
[96]C. Jiang, D. Morgan, I. Szlufarska, ”Structures and stabilities of small carbon interstitial clusters in cubic silicon carbide”, Acta Materialia, vol. 62, pp. 162–172, 2014