研究生: |
鄧君浩 Deng, Jun-Hao |
---|---|
論文名稱: |
在碳化矽基板上成長石墨烯並藉由角解析光電子能譜術了解其電子結構 Growth of few layer graphene on SiC surface and characterization of their electronic structure by angle-resolved photoemission |
指導教授: |
崔古鼎
Tsuei, Ku-Ding |
口試委員: |
陸大安
郭光宇 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 石墨烯 |
外文關鍵詞: | Graphene |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由一層碳原子排列成的二維蜂巢狀結構。因具備高載子遷移率、高晶格品質和經濟的價值,石墨烯被認為是下一代元件裡面具有低尺度的材料,且在未來將扮演提昇奈米技術的重要角色。在此論文中,我成功地在碳化矽基板上長出高品質的雙層石墨烯,並藉由角解析光電子能譜術探測其電子結構。我們由緊束縛模型(tight-binding model)分析在碳化矽基板上成長的一層及雙層石墨烯的實驗數據得到良好的擬合結果。從緊束縛模型擬合的結果我們得知一層以及雙層石墨烯在碳化矽基板上打開能隙的原因是因為單位晶格中兩顆碳原子的位能不同。而雙層石墨烯不僅僅是因為兩個碳原子位能不同,還有層與層之間位能不同的因素打開了能隙。在此我們利用一系列不同的入射光能量造成各個能帶強度上的震盪變化以決定出雙層石墨烯在碳化矽基板上其層與層之間的距離。我們的結果是雙層石墨烯在碳化矽基板上其層與層之間的距離為3.31埃,略小於石墨層與層間的距離。
Graphene consists of a single layer carbon atoms packed in a 2D honeycomb structure. It is very highly promising as a low-dimensional material for the next generation devices owing to its high carrier mobility, high crystal quality and economic price. It will be playing an important role to improve the nanotechnology in the future. In this thesis, I successfully grow high quality bilayer graphene on 6H-SiC and use the Angle-resolved photoemission spectroscopy (ARPES) to probe its electronic structure. We obatin a good fitting result by a tight-binding (TB) model in SLG/SiC and BLG/SiC. Importantly, the on-site energy difference caused the gap opening in SLG/SiC and BLG/SiC can be realized by TB fitting. The reason of the gap opening in BLG/SiC is not only attributed to the difference in on-site energy between different carbon atom sites in the same graphene layer, but also originates from the energy difference between different graphene layers. The interlayer spacing of BLG/SiC can be determined from the oscillation period of photoemission intensity for different photon energies. Our result of interlayer spacing d = 3.31 Å for BLG/SiC is slightly smaller than the value in bulk graphite.
chapter 1
A.K. Geim and K.S. Novoselov, “The rise of graphene”, Nature Materials. 6, 183 (2007).
F. A. Lindemann, Z. The calculation of molecular vibration frequencies. Phys. 11, 609, (1910).
Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 5, 177-222 (1935).
Landau, L. D. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 11, 26-35 (1937).
K.V. Emstev et al., Toward wafer-size graphene layers by atmospheric pressure graphitzation of silicon carbide. Nature Materials 8, 203 (2009).
I. Pletikosic et al., Dirac cone and minigaps for grapheme on Ir(111). Phys. Rev. Lett. 102, 056808 (2009).
Paolo Lacovig et al., Growth of dome-shaphe carbon nanoislands on Ir(111):the intermediate between carbidic and quasi-free-standing grapheme. Phys. Rev. Lett. 103, 166101 (2009).
J. Coraux et al., Growth of grapheme on Ir(111). New Journal of Physics 11, 023006 (2009).
P.W. Sutter et al., Epitaxial graphene on ruthenium. Nature Materials 7, 406 (2008).
P. Sutter et al., Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 9, 2654 (2009).
C. Enderlein et al., The formation of an energy gap in grapheme on ruthenium by controlling the interface. New Journal of Physics 12, 033014 (2010).
A. Varykhalov and O. Rader, Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 80, 035437 (2009).
Yu. S. Dedkov et al., Rashba Effect in the Graphene/Ni(111) System. Phys. Rev. Lett. 100, 107602 (2008).
A. Gruneis et al., Dynamics of grapheme growth on a metal surface: a time-dependent photoemission study. New Journal of Physics 11, 073050 (2009).
Chapter 2
H. Hertz: U ̈ber einen Einfluess des ultravioletten Lichtes auf die elektrische Entladung (On the influence of ultraviolet light on the electric discharge ). Ann. Physik 31, 983 (1887)
Stefan Hu ̈fner, Photoelectron Spectroscopy, Springer
Dominic, A. Ricci, Photoemission studies of interface effect on thin films properties. Ph. D. thesism, University of Illinois at Urbana-Champaign (2006)
Andrea Damascolli Physica Scripta. Vol. T109, 61-74, 2004 Probing the Electronic Structure of Complex Systems by ARPES
Kittel Charles, Introduction to solid state physics. (2005)
A. Zangwill, Physics at Surfaces, Cambridge University Press (1987)
Z. -X Shen, D.S. Dessau Physics Report 253 (1995) Electronic Structure and Photoemission Studies of Late Transition-Metal Oxides-Mott insulators and High- Temperature superconductors.
Basic Vacuum Practice, third edition, (Varian Inc., Lexington, 1992)
National Synchrotron Radiation Research Center, Introduction to synchrotron radiation. Website of National Sunchrotron Radiation Research Center.
Hans Lu ̈th, Surface ansd Interfaces on solid Material, Springer.
Chapter 3
U. Starke, J. Bernhardt, J. Schardt, and K. Heinz Lehrstuhl f¨ur Festk¨orperphysik. SiC surface reconstruction: relevancy of atomic structure for growth technilogy. Surface Review and Letters, 1129-1141 (1999)
C. Cheng, V. Heine and I. L. Jones, J. Phys. CM 2, 509 (1990).
C. Cheng, V. Heine and R. J. Needs, Europhys. Lett. 12, 69 (1990).
R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).
Adrian R. Powell and Larry B. Rowland. SiC materials—progress, status, and potential roadblocks. IEEE, 90 942-955 (2002)
S. Nie, PhD Thesis, Temperature-dependence of epitaxial graphene formation on SiC(0001). Department of Physics, Carnegie Mellon University (2007)
The SiCrystal AG, Germany website
The Lemelson - MIT Program, Edward Acheson - Carborundum, electronic source.
Van Bommel A, Crombeen J, van Tooren A (1975) LEED and Auger-electron observations of SiC(0001) surface. Surf Sci 48:463-472
T. Seller, Appl. Phys. A: Mater. Sci. Process.85 (2006) 371-385
Walt A. de Heer et.al PNAS 108 (2011) 16900-16905
W. Norimatsu, M.Kusunoki. Formation process of graphene on SiC(0001). Phys. E 42 691-694 (2010)
A. Bostwick et al., Progress in Surface Science 84, 380-413 (2009)
Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen. Raman spectroscopy and imaging of graphene. Nano Res. 1 273- 291(2008)
Chapter 4
Partoens, B. and Peeters, F. M. From graphene to graphite: electronic structure around the K point, Phys. Rev. B 74, 075404 (2006).
Ohta, T. et al., Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).
Mucha-Kruczyński, M. et al. Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission, Phys. Rev. B 77, 195403 (2008).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1-186 (2002).
Guo, Y. F. et al., Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Apply Phys. Lett. 92, 243101 (2008)
Ohta, T.et al., Controlling the electronic structure of bilayer graphene, Science 313, 951 (2006).
Chapter 5
Zhou, S.Y., Gweon, G. H., & Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nature material. 6, 770 - 775 (2007).
Ohta, T. et al., Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1-186 (2002).