研究生: |
古薇涵 |
---|---|
論文名稱: |
多產品情境下之多廠區訂單分配與船舶路徑規劃問題 Metaheuristics for a Multi-Plant Order Allocation and Ship Routing Problem |
指導教授: | 林則孟 |
口試委員: |
郭人介
陳盈彥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 176 |
中文關鍵詞: | 多廠區訂單分配問題 、船舶路徑規劃問題 、兩階段方法 、回饋式演算法 、基因演算法 、門檻值接受法 、和弦搜尋演算法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著國際貿易的發展,各國間的貨運往來多以海上運輸為主,整體營運受訂單、工廠、港口與船舶的變動而影響,使得許多公司轉型為整合性企業,當各工廠位於不同區域,訂單的運輸成本便是企業進行訂單分配所需考慮的因素,如何將訂單分配給適合的工廠製造使得船舶運輸總成本最小即為本研究目的。因此,本研究將針對產業專用船運的短期營運問題進行探討,在多產品及多廠區的情境下,將此問題分為多廠區訂單分配問題(MPOAP)與船舶路徑規劃問題(SRP)。
個案公司現行作法由多個部門以人工方式協同規劃且資訊並無統一,導致規劃時間過長,因此,本研究提出兩種搜尋架構模式,分別為兩階段方法(Two phase method)與回饋式演算法(Inner-outer iterative algorithm),其中,使用基因演算法(GA)/門檻值接受法(TA)求解MPOAP,產生訂單與工廠的方案後,並分別結合和弦搜尋演算法(HS)求解SRP,以單位運輸成本最小化為目標,找出最佳的船舶路徑組合。在實驗過程中發現,求解SRP之HS具有隨機性,進行多次抽樣後產生的績效值皆不同,因此,需依賴重複抽樣的方式縮小隨機產生的變異,故本研究進一步提出以回饋式演算法為架構的GA+HS結合OCBA,透過OCBA決定各方案之抽樣次數,以有效率地分配抽樣次數並減少運算時間。
為了測試方法的可行性,先使用小型問題進行四種演算法組合之驗證,再透過公司一期實務資料進行求解,由實驗得知,不論訂單量大小皆可找到不錯的可行解,而不同的搜尋架構各有其優缺點,其中,兩階段方法之優點是求解快速,於實務上大型資料的應用可能較符合公司求解效率的需求;回饋式方法具有高穩定性且可找到較佳的成本績效。最後加入OCBA皆可減少運算時間,並在大型問題中可求得近似最佳解。因此,本研究提出的方法可以輔助派遣人員作業,以減少規劃時間並有效的做出正確決策,進而降低實務上的成本。
1. 王世欽,「多廠區生產系統之訂單分配模式—以液晶顯示器產業為例」,東海大學工業工程學系碩士論文,2002。
2. 李志勇,「多廠整合型生產指派與排程系統」,東海大學工業工程與經營資訊研究所碩士論文,2002。
3. 林光,海運學,華泰書局,民國88年出版。
4. 林慈傑,「以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題」,台灣大學工業工程研究所碩士論文,2002。
5. 陳玉琪,「供應鏈訂單分割與途程模式之研究」,中原大學工業工程研究所碩士論文,2002。
6. 曾煥雯,「跨廠訂單分配模式之構建—應用模擬退火演算法」,元智大學工業工程研究所碩士論文,2000。
7. 劉向邦,「以和弦搜尋演算法為基礎之混合式全域搜尋演算法求解含凹形節線成本最小成本轉運問題之研究」,中央大學土木工程學系碩士論文,2008。
8. 劉珮伶,「考量產品配送下之多廠區訂單分配問題應用門檻值接受法」,元智大學工業工程與管理研究所碩士論文,2004。
9. 羅冠君,「基於和聲搜尋演算法與離散拉格朗日法之混合演算法於結構最佳化設計的研究」,中央大學土木工程研究所碩士論文,2008。
10. Andersson, H, Christiansen, M, Fagerholt, K. “The maritime pickup and delivery problem with time windows and split loads.” Working Paper, Norwegian University of Science and Technology, Norway; 2010.
11. Antoine Landrieu, Yazid Mati, and Zdenek Binder, “A tabu search heuristic for the single vehicle pickup and delivery problem with time windows”, Journal of Intelligent Manufacturing, vol. 12, pp. 497 - 508, 2001.
12. Chan, F.T.S.,Chung, S.H. and Wadhwa,S. “A hybrid genetic algorithm for production and distribution” , Omega(3)2005,pp:345-355.
13. Chen, A., Yang, G., Wu, Z., “Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem.” Journal of Zhejiang University SCIENCE A, 7(4):607–614, 2006.
14. Chen, Ai-ling, Yang, Gen-ke, Wu, Zhi-ming, “Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem.” Journal of Zhejiang University SCIENCE A, 7(4), pp. 607-614, 2006.
15. Chen, C. H., Lin, J., Yucesan, E., and Chick, S. E., “Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization.”, Discrete Event Dynamic Systems. Vol.10, 251-270, 2000.
16. Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D., “Maritime transportation”, Handbooks in operations research and management science: transportation, North-Holland, Amsterdam (2006) 113p.
17. Dantzig, G.B., Ramser, J.H., “The truck dispatiching problem”, Management Science, Vol. 6, pp. 80-91, 1959.
18. Dudewicz, E.J. and Dalal, S.R. “Allocation of Observations in Ranking and Selection with Unequal Variances”, The Indian Journal of Statistics, pp. 28-78, 1975.
19. Holland, J., “Adaptation in Natural and Artificial Systems”, University of Michigan Press, 1975.
20. Lin, Dung-Ying and Liu, Hui-Yen. “Combined Ship Allocation, Routing and Freight Assignment in Tramp Shipping”, Transportation Research: Part E, Vol. 47, Issue 4, pp. 414-431, 2011.
21. Fagerholt, K., “A Simulation Study on the Design of Flexible Cargo Holds in Small-sized Bulk Ships”, Maritime Policy and Management, Vol. 26, No. 2, pp. 105-109, 1999.
22. Fagerholt, K. and Christiansen M., “A Combined Ship Scheduling and Allocation Problem.”, Journal of the Operational Research Society, Vol. 51, pp. 834-842, 2000.
23. Fagerholt, K. and Christiansen M., “A Traveling Salesman Problem with Allocation, Time Windows and Precedence Constraints-an Application to Ship Sceheduling.”, International Transactions in Operational Research, Vol. 7, pp, 231-244, 2000.
24. Fagerholt, K., Korsvik, Jarl Eirik, and Arne Løkketangen, “Ship Routing and Scheduling with Persistence and Distance Objectives” Innovations in Distribution Logistics , IWDL, Springer-Lecture Notes in Computer Science, pp. 89-107, 2009,.
25. Geem, Z. W. and Kim, J. H., “A new heuristic optimization algorithm: Harmony search.” Simulation, 76, 60-68, 2001.
26. Geem, Z. W. and Lee, S. K., “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. ” Comput. Methods. Appl. Mech. Engrg, 194, 2005, pp. 3902-3933.
27. Geem, Z. W., Lee, K. S., and Park, Y., “Application of Harmony Search to Vehicle Routing,” American Journal of Applied Sciences, Vol. 2, pp. 1552-1557, 2005.
28. Geem, Z. W., Tseng, C. L., and Park, Y., “Harmony search for generalized orienteering problem: Best touring in China,” Lecture Notes in Computer Science, 3612, 741-750, 2005.
29. Geir Bronmo, Mareielle Christiansen, Kjetil Fagerholt and Bjorn Nygreen, “A Multi-start local search heuristic for ship routing scheduling a computational” Computer and Operations Research Society , Vol.34,pp.900-917,2007.
30. Gunnarsson, H., Rönnqvist, M., & Carlsson, D. “A Combined Terminal Location and Ship Routing Problem.” The Journal of the Operational Research Society, 57, 928-938, 2006.
31. He, D., Lee, L. H., Chen, C.H., and Fu, M., and Wasserkrug, S., “Simulation Optimization Using the Cross-Entropy Method with Optimal Computing Budget Allocation”, ACM Transactions on Modeling and Computer Simulation, 20(1), pp 133–161, 2010.
32. Jetlund, A.S., Karimi, I.A. “Improving the logistics of multi-compartment chemical tankers.” Computers & Chemical Engineering 28, 1267–1283, 2004.
33. Kendall, L.C. and Buckley, J.J., The Business of Shipping (7^th edition). Cornell Maritime Press, 2001.
34. Korsvik, J., Fagerholt, K., “A tabu search heuristic for ship routing and scheduling with flexible cargo quantities.” Journal of Heuristics, 16 (2), pp. 117–137, 2010.
35. Korsvik, J., Fagerholt, K., Laporte, G., “A large neighborhood search heuristic for ship routing and scheduling with split loads.” Computers & Operations Research 38 (2), 474–483, 2011.
36. Lee, K.S. and Geem, Z.W., “A new structural optimization method based on the harmony search algorithm”, Computers and Structures, vol. 82, pp.781-798, 2004.
37. Lorena, L.A.N. and Narciso, M.G., “Relaxation heuristics for a generalized assignment problem”, European Journal of Operational Research, vol. 91, pp. 600-610., 1996.
38. Lee, L.H., Chew, E.P., Teng, S.Y., and Chen, Y., “Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem.” European Journal of Operational Research, 189, 476-491, 2008.
39. Mahdavi, M., Fesanghary, M., and Damangir, E., “An improved harmony search algorithm for solving optimization problems.” Applied Mathematics and Computation, 188:1567–1579, May 2007.
40. Nanry, William P. and Wesley Barnes, J., “Solving the pickup and delivery problem with time windows using reactive tabu search”, Transportation Research Part B: Methodological 34(2), 107-121, 2000.
41. Omran, M.G.H. and Mahdavi, M., “Global-best Harmony Search.” Applied Mathematics and Computation, Vol. 198, No. 2, pp. 643–656, 2008.
42. Pirkul, H. and Jayaraman, V., “A multi-commodity, multi-plant, capacitated facility location problem: Formulation and efficient heuristic solution”, Computer and Operations Research, 25(10), pp 869-878, 1998.
43. Rinott, Y., “On Two-stage Selection Procedures and Related Probability Inequalities”, Communications in Statistics A7, pp. 799—811, 1978.
44. Ronen, D., “Cargo Ships Routing and Scheduling: Survey of Models and Problems.”, European Journal of Operational Research, Vol 12, pp. 119-126, 1983.
45. Ronen, D., “Short-term Schedulilng of Vessels for Shipping Bulk or Semi-bulk Commodities Orginating in a Single Area”, Operational Research, Vol.34, No. 1, pp. 64-173, 1986.
46. Venkatesan, S.R., Logendran, D. and Chandramohan, D., “Optimization of Capacitated Vehicle Routing Problem using PSO” International Journal of Engineering Science and Technology(IJEST) , Vol 3. No.10, October 2011.
47. Wang, Z.Z., Cheng, J.X., Fang, H.G., Qian, F.L. "A hybrid optimization algorithm solving vehicle routing problems." Operations Research and Management Science, 13:48-52 (in Chinese), 2004.
48. Yang, Feng-Cheng., Chen, Kuentai, Wang, Ming-Tzong, Chang, Ping-Yu, Sun, Kuo-Chih,. “Mathematical modeling of multi-plant order allocation problem and solving by genetic algorithm with matrix representation.” Int J Adv Manuf Technol, 2010, 51:1251-1259.
49. Yang, K.K., Sum, C.C., “A comparison of job shop dispatching rules using a total cost criterion.”, International Journal of Production Research, 32(1994), pp. 807-820.