簡易檢索 / 詳目顯示

研究生: 何建霖
論文名稱: 氮化銦氫離子感應場效電晶體
InN Based Hydrogen Ion Sensitive Field Effect Transistor
指導教授: 葉哲良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 氮化銦離子感應場效電晶體
外文關鍵詞: InN, ISFET
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • pH值為一在日常生活中時常聽見的名詞,其代表的意義為氫離子濃度的高低,pH值越低氫離子濃度越高。氫離子濃度對環境的影響力很大,故不論是在生物、化學甚至日常生活中pH值的量測都是一個很重要的課題。
    氮化銦半導體材料在表面有高濃度的電子累積現象(~1013cm-2),其電子濃度易受到外界環境的影響而變化,故極具有感測器的潛力,本研究利用超薄的氮化銦薄膜(~10nm)來充分利用氮化銦表面電子累積的特性,以離子感應場效電晶體的形式來製作氫離子濃度感測器,在pH值2到10的範圍內,有58.33mV/pH的能士特響應(Nernst response),其值相當接近能士特方程式所預測的59.16mV/pH的理論極限。
    在電流操作模式下,施予0.5V的電壓,每單位pH值改變可造成37uA的變化量,與氮化鋁鎵異質接面製成的離子場效電晶體相比,電流變化量大了一個數量級,氮化銦表面高濃度的電子累積造成了此優異的結果。
    許多感測器重要的效能指標亦被探討,如反應時間、濃度偵測極限、精確度等。
    最後以偵測帶負電荷奈米金粒子的方式,來初步驗證此氫離子感應場效電晶體應用於其他帶電荷粒子偵測的潛力。


    pH is a familiar noun in our daily life, it represents the concentration of hydrogen ion in a solution, the lower pH value means higher hydrogen ion concentration. pH value is significantly effective in many fields, such as biology, chemistry, agriculture and so on. The measurement of pH value is an important topic.
    An intrinsic surface electron accumulation layer is existed in indium nitride. The surface electron concentration is sensitive to the variation of environment. In order to bring surface electron in to full play, ultra thin InN film (~10nm) was used in this study. The pH sensor was realized by the form of Ion Sensitive Field Effect Transistor (ISFET). In the range of pH value 2 to 10, there is Nernst response 58.33mv/pH, which is very close to the theoretical value 59.16mv/pH calculated by Nernst equation.
    When operated in current mode and applied voltage 0.5V, the current variation was 37uA per pH, which is one order higher than the ISFET made by AlGaN/GaN heterostructure. It’s resulted from the property of surface electron accumulation.
    Many important performance factor of sensor was investigated, such as response time, detection limit, precision, etc.
    Finally, by the way of negative charged Au nanoparticles detection, it shows the potential to detect other charged particles or molecules.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目標 4 1.3 全文架構 5 第二章 文獻回顧 6 2.1 離子感應場效電晶體簡介 6 2.2 離子感應場效電晶體相關理論 10 2.2.1 能士特方程式 10 2.2.2 離子鍵結吸附模型 12 2.3 離子感應場效電晶體效能指標及其定義 15 2.3.1 能士特響應 15 2.3.2 反應時間 16 2.3.3 濃度偵測極限 16 2.3.4 精確度 17 2.4 各種感應膜之能士特響應 18 2.5 氮化銦薄膜 19 2.5.1 氮化銦SOI結構薄膜 19 2.5.2 氮化銦表面電子累積性質 21 2.5.3 氮化銦化學穩定性 26 2.5.4 氮化銦表面自然氧化層 27 2.5.5 氮化銦高電子遷移率電晶體 28 第三章 元件設計與製造 31 3.1 氮化銦離子感應場效電晶體設計 31 3.1.1 通道寬長比設計 32 3.1.2 電極設計 32 3.2 元件製程 34 3.3 元件封裝 37 第四章 量測設備與量測方法 41 4.1 量測設備 41 4.2 量測方法 41 第五章 結果與討論 44 5.1 電流-電壓特性曲線 44 5.1.1 置於空氣中 44 5.1.2 置於pH緩衝溶液 45 5.1.3 置於鹽酸與氫氧化鈉溶液 47 5.2 能士特響應量測 48 5.2.1 pH緩衝溶液 48 5.2.2 鹽酸與氫氧化鈉 49 5.3 動態量測 51 5.3.1 鹽酸與磷酸 52 5.3.2 氫氧化鈉與氫氧化鈣 57 5.4 濃度偵測極限 60 5.5 精確度量測 61 5.6 使用INN ISFET偵測奈米金粒子 63 第六章 結論 69 第七章 未來工作 71 參考文獻 73

    [1] Michalska, A., Hulanicki, A. and Lewenstam, A. "All-Solid-State Hydrogen Ion-Selective Electrode Based on a Conducting Poly(Pyrrole) Solid Contact". Analyst, 119, 11 (1994)
    [2] Chaniotakis, N. A., Alifragis, Y., Georgakilas, A. and Konstantinidis, G. "GaN-based anion selective sensor: Probing the origin of the induced electrochemical potential". Applied Physics Letters, 86, 16 (2005)
    [3] Bergveld, P. "Development of an ion-sensitive solid-state device for neurophysiological measurements". IEEE Trans Biomed Eng, 17, 1 (1970)
    [4] Lu, H., Schaff, W. J. and Eastman, L. F. "Surface chemical modifica-tion of InN for sensor applications". Journal of Applied Physics, 96, 6 (2004)
    [5] Cimalla, V., Lebedev, V., Morales, F. M., Goldhahn, R. and Ambacher, O. "Model for the thickness dependence of electron concentration in InN films". Applied Physics Letters, 89, 17 (2006)
    [6] Kokawa, T., Sato, T., Hasegawa, H. and Hashizume, T. "Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure". Journal of Vacuum Science & Technology B, 24, 4 (2006)
    [7] Bergveld, P. "Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years". Sensors and Actuators B-Chemical, 88, 1 (2003)
    [8] Kwon, D. H., Cho, B. W., Kim, C. S. and Sohn, B. K. "Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET". Sensors and Actuators B-Chemical, 34, 1-3 (1996)
    [9] Steinhoff, G., Hermann, M., Schaff, W. J., Eastman, L. F., Stutzmann, M. and Eickhoff, M. "pH response of GaN surfaces and its application for pH-sensitive field-effect transistors". Applied Physics Letters, 83, 1 (2003)
    [10] Kang, B. S., Wang, H. T., Lele, T. P., Tseng, Y., Ren, F., Pearton, S. J., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J. "Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors". Applied Physics Letters, 91, 11 (2007)
    [11] Fung, C. D., Cheung, P. W. and Ko, W. H. "A Generalized Theory of an "Electrolyte-Insulator-Semiconductor Field-Effect Transistor". Ieee Transactions on Electron Devices, 33, 1 (1986)
    [12] Yates, D. E., Levine, S. and Healy, T. W. "Site-binding model of the electrical double layer at the oxide/water interface". Journal of the Chemical Society, Faraday Transactions 1, 70(1974)
    [13] Huang, C. C. "Indium Nitride Based Anion Sensor". National Tsing Hua University, (2006)
    [14] Eggins, B. R. "Chemical sensors and biosensors". John Wiley, (2001)
    [15] Chou, J. C. and Weng, C. Y. "Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET". Mater Chem Phys, 71, 2 (2001)
    [16] Yin, L. T., Chou, J. C., Chung, W. Y., Sun, T. P. and Hsiung, S. K. "Characteristics of silicon nitride after O-2 plasma surface treatment for pH-ISFET applications". Ieee T Bio-med Eng, 48, 3 (2001)
    [17] Chou, J. C. and Wang, Y. F. "Preparation of the SnO2 gate pH-sensitive ion sensitive field-effect transistor by the sol-gel technology and its temperature effect". Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 41, 10 (2002)
    [18] Chou, J. C. and Chiang, J. L. "Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing". Sensors and Actuators B-Chemical, 62, 2 (2000)
    [19] Chiang, J. L., Chen, Y. C. and Chou, J. C. "Simulation and experi-mental study of the pH-sensing property for AlN thin films". Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 40, 10 (2001)
    [20] Rezek, B., Watanabe, H., Shin, D., Yamamoto, T. and Nebel, C. E. "Ion-sensitive field effect transistor on hydrogenated diamond". Diam Relat Mater, 15, 4-8 (2006)
    [21] Gwo, S., Wu, C. L., Shen, C. H., Chang, W. H., Hsu, T. M., Wang, J. S. and Hsu, J. T. "Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature". Applied Physics Letters, 84, 19 (2004)
    [22] Mann, A. "Structure of wurtzite" http://commons.wikimedia.org/wiki/Image:Wurtzite.jpg
    [23] Lu, H., Schaff, W. J., Eastman, L. F. and Stutz, C. E. "Surface charge accumulation of InN films grown by molecular-beam epitaxy". Applied Physics Letters, 82, 11 (2003)
    [24] Mahboob, I., Veal, T. D., Piper, L. F. J., McConville, C. F., Lu, H., Schaff, W. J., Furthmuller, J. and Bechstedt, F. "Origin of electron accu-mulation at wurtzite InN surfaces". Physical Review B, 69, 20 (2004)
    [25] King, P. D. C., Veal, T. D., McConville, C. F., Fuchs, F., Furthmuller, J., Bechstedt, F., Schley, P., Goldhahn, R., Schormann, J., As, D. J., Lischka, K., Muto, D., Naoi, H., Nanishi, Y., Lu, H. and Schaff, W. J. "Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces". Applied Physics Letters, 91, 9 (2007)
    [26] Guo, Q. X., Kato, O. and Yoshida, A. "Chemical Etching of Indium Nitride". J Electrochem Soc, 139, 7 (1992)
    [27] Vartuli, C. B., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Ren, F., Zolper, J. C. and Shul, R. J. "Wet chemical etching survey of III-nitrides". Solid-State Electronics, 41, 12 (1997)
    [28] Piper, L. F. J., Veal, T. D., Walker, M., Mahboob, I., McConville, C. F., Lu, H. and Schaff, W. J. "Clean wurtzite InN surfaces prepared with atomic hydrogen". Journal of Vacuum Science & Technology A, 23, 4 (2005)
    [29] Lin, Y. S., Koa, S. H., Chan, C. Y., Hsu, S. S. H., Lee, H. M. and Gwo, S. "High current density InN/AlN heterojunction field-effect tran-sistor with a SiNx gate dielectric layer". Applied Physics Letters, 90, 14 (2007)
    [30] Luo, B., Johnson, J. W., Ren, F., Allums, K. K., Abernathy, C. R., Pearton, S. J., Dwivedi, R., Fogarty, T. N., Wilkins, R., Dabiran, A. M., Wowchack, A. M., Polley, C. J., Chow, P. P. and Baca, A. G. "dc and rf performance of proton-irradiated AlGaN/GaN high electron mobility transistors". Applied Physics Letters, 79, 14 (2001)
    [31] Rohit, K., Gila, B. P., Stafford, L., Pearton, S. J., Ren, F., Kravchenko, I. I., Amir, D. and Osinsky, A. "Thermal stability of Ohmic contacts to InN". Applied Physics Letters, 90, 16 (2007)
    [32] Yen-Sheng, L., Chi-Cheng, H., Yeh, J. A., Chi-Fan, C. and Shangjr, G. "InN-based anion selective sensors in aqueous solutions". Applied Phys-ics Letters, 91, 20 (2007)
    [33] Chen, C. F., Wu, C. L. and Gwo, S. "Organosilane functionalization of InN surface". Applied Physics Letters, 89, 25 (2006)
    [34] 林孟賢 "自組裝單分子膜上金膠體力子之靜電吸附動力學研究". 國立清華大學, (2006)
    [35] Baur, B., Howgate, J., von Ribbeck, H. G., Gawlina, Y., Bandalo, V., Steinhoff, G., Stutzmann, M. and Eickhoff, M. "Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transis-tors". Applied Physics Letters, 89, 18 (2006)
    [36] Kang, B. S., Pearton, S. J., Chen, J. J., Ren, F., Johnson, J. W., Ther-rien, R. J., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J. "Electrical detection of deoxyribonucleic acid hybridization with Al-GaN/GaN high electron mobility transistors". Applied Physics Letters, 89, 12 (2006)
    [37] Kang, B. S., Ren, F., Wang, L., Lofton, C., Tan, W. H. W., Pearton, S. J., Dabiran, A., Osinsky, A. and Chow, P. P. "Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors". Applied Physics Letters, 87, 2 (2005)
    [38] Wang, H. T., Kang, B. S., Chancellor, T. F., Lele, T. P., Tseng, Y., Ren, F., Pearton, S. J., Johnson, W. J., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J. "Fast electrical detection of Hg(II) ions with AlGaN/GaN high electron mobility transistors". Applied Physics Letters, 91, 4 (2007)
    [39] Bermejo, S., Jutten, C. and Cabestany, J. "ISFET source separation: Foundations and techniques". Sensors and Actuators B-Chemical, 113, 1 (2006)
    [40] Huang, I. Y. and Huang, R. S. "Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors". Thin Solid Films, 406, 1-2 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE