簡易檢索 / 詳目顯示

研究生: 顏廷光
Yen, Ting-Guang
論文名稱: 一種上行無線網路的聯合資源分配和數據包排程的混合學習方法
A Hybrid learning Approach for Joint Resource Allocation and Packet Scheduling in Uplink Wireless Networks
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
陳志成
Chen, Chih-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 34
中文關鍵詞: 強化學習虛構遊戲隨機博弈資源分配排程演算法超可靠的低延遲通信類型增強型移動寬帶類型無線網路
外文關鍵詞: reinforcement learning, fictitious play, stochastic games, resource allocation, scheduling algorithms, URLLC, eMBB, wireless networks
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們制定了一個包含超可靠低延遲通信類
    型(URLLC)和增強型移動寬帶類型(eMBB) 服務的聯合資源分配和
    數據包排程問題, 將它作為隨機博弈。 藉由傳統多代理人 Q 學習
    算法(multi-agent Q-learning)來解決隨機博弈的問題, 會導致維度
    災難問題或由於分佈式的環境造成信息缺失問題。 在本文中,我
    們提出了一種基於隨機混合的混合學習方案– 多代理人 Q 學習算
    法(multi-agent Q-learning)和虛構遊戲。 經由模擬,我們的方法可
    以 找到最佳策略。


    In this thesis, we formulate a joint resource allocation and packet scheduling problem for URLLC and eMBB traffic as a stochastic game. Traditional solution of stochastic games by multi-agent Q learning algorithms suffers from either a curse-of-dimension problem or a lack-ofinformation problem due to distributed environments. In this thesis we
    propose a hybrid learning scheme that is based on a random mixture of
    multi-agent Q learning algorithm and fictitious play. Through simulation
    we show that our proposed scheme is capable of finding the best policy.

    中文摘要 i Abstract ii Acknowledgements iii List of Figures vi List of Tables vii 1 Introduction 1 2 System Architecture 4 3 A Stochastic Game 8 4 Review of Reinforcement Learning 13 4.1 Principle of Deep Q-learning . . . . . . . . . . . . . . . 16 5 A Hybrid Learning Algorithm 19 6 Simulation 23 6.1 Comparison between different methods of training process 24 6.2 Comparison between different methods of resource allocation and packet scheduling . . . . . . . . . . . . . . . 25 7 Conclusions 30 Bibliography 31

    [1] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5g ultra-reliable
    and low-latency systems design,” in 2017 European Conference on
    Networks and Communications (EuCNC), 2017, pp. 1–5.
    [2] R. Abreu, T. Jacobsen, K. Pedersen, G. Berardinelli, and P. Mogensen, “System level analysis of embb and grant-free urllc multiplexing in uplink,” in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1–5.
    [3] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
    K. Higuchi, “Non-orthogonal multiple access (noma) for cellular
    future radio access,” in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.
    [4] I. Gerasin, A. Krasilov, and E. Khorov, “Flexible multiplexing of
    grant-free urllc and embb in uplink,” in 2020 IEEE 31st Annual
    International Symposium on Personal, Indoor and Mobile Radio
    Communications, 2020, pp. 1–6.
    [5] M. Mollanoori and M. Ghaderi, “Uplink scheduling in wireless
    networks with successive interference cancellation,” IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp. 1132–1144, 2014.
    [6] E. Khorov, A. Kureev, I. Levitsky, and I. F. Akyildiz, “Prototyping
    and experimental study of non-orthogonal multiple access in Wi-Fi
    networks,” IEEE Network, 2020.
    [7] I. Gerasin, A. Krasilov, and E. Khorov, “Flexible multiplexing of
    grant-free URLLC and eMBB in uplink,” in 2020 IEEE 31st Annual
    International Symposium on Personal, Indoor and Mobile Radio
    Communications, 2020, pp. 1–6.
    [8] R. Abreu, T. Jacobsen, K. Pedersen, G. Berardinelli, and P. Mogensen, “System level analysis of eMBB and grant-free URLLC
    multiplexing in uplink,” in 2019 IEEE 89th Vehicular Technology
    Conference (VTC2019-Spring), 2019, pp. 1–5.
    [9] R. Abreu, T. Jacobsen, G. Berardinelli, K. Pedersen, I. Z. Kovacs,
    and P. Mogensen, “On the multiplexing of broadband traffic and
    grant-free ultra-reliable communication in uplink,” in 2019 IEEE
    89th Vehicular Technology Conference (VTC2019-Spring), 2019,
    pp. 1–5.
    [10] M. Mollanoori and M. Ghaderi, “Uplink scheduling in wireless
    networks with successive interference cancellation,” IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp. 1132–1144, 2014.
    [11] A. Anand, G. de Veciana, and S. Shakkottai, “Joint scheduling of
    URLLC and eMBB traffic in 5G wireless networks,” IEEE Trans.
    on Networking, vol. 28, April 2020.
    [12] C.-H. Yu, L. Huang, C.-S. Chang, and D.-S. Lee, “Poisson receivers: a probabilistic framework for analyzing coded random access,” IEEE Trans. on Networking, vol. 29, no. 2, April 2021.
    [13] T. Jacobsen, R. Abreu, G. Berardinelli, K. Pedersen, P. Mogensen,
    I. Kovacs, and T. K. Madsen, “System level analysis of uplink
    grant-free transmission for URLLC,” in IEEE Globecom Workshops, 2017.
    [14] 3GPP, “Study on scenarios and requirements for next generation
    access technologies,” 3GPP TR 38.913 V1.0.0.
    [15] S. E. Elayoubi, P. Brown, M. Deghel, and A. Galindo-Serrano,
    “Radio resource allocation and retransmission schemes for URLLC
    over 5G networks,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 896–904, 2019.
    [16] 3GPP, “Physical layer procedures for data,” 3GPP TR 38.214
    v15.1.0, March 2018.
    [17] C. Wang, Y. Chen, Y. Wu, and L. Zhang, “Performance evaluation
    of grant-free transmission for uplink urllc services,” in IEEE VTC
    Spring, 2017.
    [18] L. Shapley, “Stochastic games,” PNAS, vol. 39, pp. 1095–1100,
    1953.
    [19] Y. Shoham and K. Leyton-Brown, Multiagent systems algorithmic,
    game-theoretic, and logical foundations. Cambridge: Cambridge
    University Press, 2009.
    [20] N. Vieille, Handbook of Game theory with economic applications.
    Amsterdam: Elsevier Science, 2002.
    [21] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
    Learning, vol. 8, pp. 279–292, 1992.
    [22] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement learning: a critical survey,” Stanford University, Tech. Rep.,
    2003.
    [23] L. Bu¸soniu, R. Babuska, and B. D. Schutter, “A comprehensive sur- ˘
    vey of multiagent reinforcement learning,” IEEE Transactions on
    Systems, Man, and Cybernetics - part C: Applications and Reviews,
    vol. 38, no. 2, pp. 156 – 172, March 2008.
    [24] G. W. Brown, “Iterative solution of games by fictitious play,” in
    Activity Analysis of Production and Allocation, T. C. Koopmans,
    Ed. New York: Wiley, 1951.
    [25] E. Kalai and E. Lehrer, “Rational learning leads to Nash equilibrium,” Econometrica, vol. 61, no. 5, pp. 1019–45, 1993.
    [26] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
    in cooperative multiagent systems,” 1998, p. 746–752.

    QR CODE