本實驗研究照光輔助烘烤對溶膠-凝膠法(sol-gel)鍍製之鐵酸鉍薄膜的光化學效應。實驗分為兩部分,第一部分,BFO及B*FO(多補償5mol% Bi)薄膜分別於100℃下施加三種光源(Hal,UVA,UVC)照光輔助烘烤10分鐘;第二部分,基於溶液的吸收限界隨溫度上升會產生紅移現象,設計實驗將BFO薄膜分別於100℃ 和150℃ 兩種溫度下以三種光源照光輔助烘烤10分鐘。探討不同光源與烘烤溫度對薄膜結晶性、表面形貌及電性的影響,討論其可能的機制。
FTIR分析結果,發現Bi溶液對鐵酸鉍薄膜照光輔助烘烤時的吸光行為比Fe溶液有較大的影響,此現象將改變BFO薄膜照光輔助烘烤後的特性,推測Bi溶液的吸光特性扮演關鍵角色。
FTIR結果,UVC照光輔助烘烤確實可加速薄膜的有機物與氮化物分解、揮發的速率;拉曼光譜分析,發現UVC照光輔助的薄膜在焦化處理後,有助於鉍-氧(Bi-O)鍵結的形成,具有抑制高溫鉍揮發的效果,使薄膜在不另補償鉍的情況下即可維持化學計量比(Bi與Fe比例接近為1:1),因此以UVC照光輔助烘烤將可改善薄膜的結晶性及表面形貌,進而提升電性。溫度效應(溶液吸收限界的紅移現象),使UVA對BFO-B薄膜的作用變的有效且顯著,薄膜的特性表現也有所改善。
依據各項分析結果與參考相關文獻,推測BFO薄膜特性受光影響之主要原因,為溶膠―凝膠鍍膜製程中受紫外光光照產生光化學反應,促進有機物及氮化物分解與揮發,因此會影響薄膜結晶性、優選方向及表面形貌,進而影響電性表現。
[1] 鄭佩慈, 鐵電材料之特性與應用. 儀科中心簡訊, 2005(68): p. 10-11.
[2] 陳瀅如, "添加微細粉對鈦酸鉛鍍膜製程與特性之研究". 清華大學碩士論文, (1998).
[3] 陳銘森, "鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究". 清華大學博士論文, (1996).
[4] Schwartz, R.W., Chemical solution deposition of perovskite thin films. Chemistry of materials, 1997. 9(11): p. 2325-2340.
[5] Xu, Y., Ferroelectric materials and their applications1991: North Holland.
[6] 江長凌,林煥祐,朱智謙, ”半導體製程中高介電(High K)材料的介紹”. 台灣大學化研所.
[7] Kamlah, M., Ferroelectric and ferroelastic piezoceramics–modeling of electromechanical hysteresis phenomena. Conti199nuum Mechanics and Thermodynamics, 2001. 13(4): p. 219-268.
[8] 鍾為烈, 鐵電體物理學. 科學出版社, (1996).
[9] 李雅明, 吳世全, and 陳宏名, 鐵電記憶元件, 電子月刊第二卷第九期.
[10] Lines, M.E. and A.M. Glass, Principles and applications of ferroelectrics and related materials1977: Oxford University Press.
[11] G.Bertotti, I.M.a., The Science of Hysteresis. Elsevier (2005). Volume 3.
[12] Moulson, A.J. and J.M. Herbert, Electroceramics: Materials, Properties, Applications2003: Wiley.
[13] 李雅明, 固態電子學1995: 全華.
[14] 吳朗, 電子陶瓷: 介電1994: 全欣.
[15] Yang, Y., et al., Schottky barrier effects in the electronic conduction of sol–gel derived lead zirconate titanate thin film capacitors. Journal of applied physics, 1998. 84(9): p. 5005-5011.
[16] Stolichnov, I. and A. Tagantsev, Space-charge influenced-injection model for conduction in Pb (ZrxTi1− x) O3 thin films. Journal of applied physics, 1998. 84(6): p. 3216-3225.
[17] Warren, W.L., D. Dimos, and R.M. Waser, Degradation mechanisms in ferroelectric and high-permittivity perovskites. MRS bulletin, 1996. 21(07): p. 40-45.
[18] Ohring, M., Materials science of thin films2001: Academic press.
[19] Ivanov, D., et al., Structural and dielectric properties of spin‐on barium‐strontium titanate thin films. Journal of applied physics, 1995. 77(6): p. 2666-2671.
[20] Wolf, S. and R. Tauber, Silicon processing for the VLSI era (2000), Lattice Press.
[21] Kubel, F. and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science, 1990. 46(6): p. 698-702.
[22] Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003. 299(5613): p. 1719-1722.
[23] Wu, Y., et al., Strong magnetoelectric coupling in multiferroic BiFeO3–Pb (Zr 0.52 Ti 0.48) O3 composite films derived from electrophoretic deposition. Applied Physics Letters, 2008. 93(19): p. 192915-192915-3.
[24] Yang, S., et al., Photovoltaic effects in BiFeO3. Applied Physics Letters, 2009. 95(6): p. 062909.
[25] 楊展其, 梁振偉, and 朱英豪, 多鐵材料物理鉍鐵氧之磁電耦合與應用. 物理雙月刊, 2009. 31(5): p. 468-475.
[26] Lebeugle, D., et al., Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Physical Review B, 2007. 76(2): p. 024116.
[27] Ederer, C. and N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Physical Review B, 2005. 71(6): p. 060401.
[28] Chu, Y.-H., et al., Controlling magnetism with multiferroics. Materials Today, 2007. 10(10): p. 16-23.
[29] 陳三元, 強介電薄膜之液相化學法製作. 工業材料, 1995. 108: p. 100-111.
[30] 蔡裕榮 and 周禮君, 以溶膠凝膠法製備透明導電氧化物薄膜的探討. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2002. 60(3): p. 307-318.
[31] 賴彥傑, 以溶膠凝膠法製作氧化鋅摻鎂之光學性質分析. 2010.
[32] Dislich, H. and P. Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings. Journal of Non-Crystalline Solids, 1982. 48(1): p. 11-16.
[33] Sanchez, C., et al., Non-Cryst. Solids, 1988. 100: p. 650.
[34] Schmidt, H. and M. Mennig, Wet coating technologies for glass. Saarbrucken, Germany, 2000.
[35] Arai, K., et al., Two‐photon processes in defect formation by excimer lasers in synthetic silica glass. Applied Physics Letters, 1988. 53(20): p. 1891-1893.
[36] Glinka, Y.D., S.-H. Lin, and Y.-T. Chen, Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light. Physical Review B, 2000. 62(7): p. 4733.
[37] Primak, W., Determination of small dilatations and surface stress by birefringence measurements. Surface Science, 1969. 16: p. 398-427.
[38] Fiori, C. and R. Devine, Evidence for a wide continuum of polymorphs in a-SiO2. Physical Review B, 1986. 33(4): p. 2972.
[39] Imai, H., et al., Ultraviolet-reduced reduction and crystallization of indium oxide films. Journal of applied physics, 1999. 85(1): p. 203-207.
[40] Chakarian, V., et al., Formation of surface F centers on CaF2/Si (111). Physical Review B, 1993. 48(24): p. 18332.
[41] Taylor, D. and B. Fabes, Laser processing of sol-gel coatings. Journal of Non-Crystalline Solids, 1992. 147: p. 457-462.
[42] Exarhos, G.J., N.J. Hess, and S. Wood. Transient stress evolution and crystallization in laser-irradiated amorphous titania sol-gel films. in Laser-Induced Damage in Optical Materials: 1991. 1992. International Society for Optics and Photonics.
[43] Imai, H., et al., Significant densification of sol‐gel derived amorphous silica films by vacuum ultraviolet irradiation. Journal of applied physics, 1996. 79(11): p. 8304-8309.
[44] Imai, H., et al., Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films. Journal of sol-gel science and technology, 1998. 13(1-3): p. 991-994.
[45] Chen, M.-F., et al., Laser direct write patterning technique of indium tin oxide film. Thin Solid Films, 2007. 515(24): p. 8515-8518.
[46] Nagase, T., T. Ooie, and J. Sakakibara, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films. Thin Solid Films, 1999. 357(2): p. 151-158.
[47] Asakuma, N., et al., Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp. Journal of sol-gel science and technology, 2003. 26(1-3): p. 181-184.
[48] Asakuma, N., et al., Photocrystallization of amorphous ZnO. Journal of applied physics, 2002. 92(10): p. 5707-5710.
[49] Fang, Q., et al., High- k dielectrics by UV photo-assisted chemical vapour deposition. Microelectronic engineering, 2003. 66(1): p. 621-630.
[50] Tao, X., et al., CO2 laser-induced crystallization of sol–gel-derived indium tin oxide films. Applied Physics A, 2009. 96(3): p. 741-749.
[51] Asakuma, N., et al., Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films. Journal of sol-gel science and technology, 2000. 19(1-3): p. 333-336.
[52] Lee, J.K., et al., Characterization and elimination of dry etching damaged layer in Pt/Pb (Zr 0.53 Ti 0.47) O3/Pt ferroelectric capacitor. Applied Physics Letters, 1999. 75(3): p. 334-336.
[53] Soyer, C., et al., Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution. Journal of applied physics, 2002. 92(2): p. 1048-1055.
[54] Park, H.-H., H.-H. Park, and R.H. Hill, Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition. Applied surface science, 2004. 237(1): p. 427-432.
[55] Park, H.-H., H.-H. Park, and R.H. Hill, Electrical properties of PLZT thin films formed by photochemical metal-organic deposition with various Zr/Ti ratios. Journal of electroceramics, 2006. 17(2-4): p. 135-139.
[56] Park, H.-H., et al., Electrical and ferroelectric properties of SBT thin films formed by photochemical metal-organic deposition. Sensors and Actuators B: Chemical, 2007. 126(1): p. 289-293.
[57] Yan, F., et al., In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO3 film. Journal of Alloys and Compounds, 2013. 570: p. 19-22.
[58] Kim, C.J., et al., Investigation of the drying temperature dependence of the orientation in sol–gel processed PZT thin films. Journal of materials science, 1997. 32(5): p. 1213-1219.
[59] Li, A., et al., Effects of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition. Journal of applied physics, 2000. 88(2): p. 1035-1041.
[60] Bhaskar, S., et al., Influence of Precursor Solutions on the Ferroelectric Properties of Sol‐Gel‐Derived Lanthanum‐Modified Lead Titanate (PLT) Thin Films. Journal of the American Ceramic Society, 2004. 87(3): p. 384-390.
[61] Yang, C.C., et al., Preparation of (100)‐oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb (Zr0. 53Ti0. 47) O3. Applied Physics Letters, 1995. 66(20): p. 2643-2645.
[62] Park, G.-T., et al., Orientation control of sol-gel-derived lead zirconate titanate film by addition of polyvinylpyrrolidone. Journal of materials research, 2005. 20(4): p. 882-888.
[63] Hwang, J.-S., et al., The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films. Sensors and Actuators A: Physical, 2005. 117(1): p. 137-142.
[64] Hwang, J.-Y., et al., UV-exposure effect on ferroelectricity of the sol-gel processed PZT thin film. Integrated Ferroelectrics, 2004. 62(1): p. 97-103.
[65] LEE, S.-A., et al., A Study of UV-Photolysis Effects on Ferroelectricity in PZT Thin Films. Integrated Ferroelectrics, 2004. 64(1): p. 201-206.
[66] Bretos, I., et al., Heterostructure and compositional depth profile of low-temperature processed lead titanate-based ferroelectric thin films prepared by photochemical solution deposition. Chemistry of materials, 2008. 20(4): p. 1443-1450.
[67] Calzada, M., et al., Low-temperature ultraviolet sol-gel photoannealing processing of multifunctional lead-titanate-based thin films. Journal of materials research, 2007. 22(07): p. 1824-1833.
[68] Kumar, S., et al., Control of microstructure and functional properties of PZT thin films via UV assisted pyrolysis. Journal of sol-gel science and technology, 2007. 42(3): p. 309-314.
[69] Huang, Z., Q. Zhang, and R. Whatmore, Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films. Journal of applied physics, 1999. 86(3): p. 1662-1669.
[70] Wu, A., et al., Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films. Chemistry of materials, 2003. 15(5): p. 1147-1155.
[71] Chen, S.Y. and I.W. Chen, Temperature–Time Texture Transition of Pb (Zr1− xTix) O3 Thin Films: I, Role of Pb‐rich Intermediate Phases. Journal of the American Ceramic Society, 1994. 77(9): p. 2332-2336.
[72] Chen, S.-Y., Texture evolution and electrical properties of oriented PZT thin films. Materials chemistry and physics, 1996. 45(2): p. 159-162.
[73] Wu, A., et al., Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films. Journal of the American Ceramic Society, 2002. 85(3): p. 641-646.
[74] Gong, W., et al., Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films. Journal of the European Ceramic Society, 2004. 24(10): p. 2977-2982.
[75] Habouti, S., C.-H. Solterbeck, and M. Es-Souni, UV assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties. Journal of sol-gel science and technology, 2007. 42(3): p. 257-263.
[76] Leu, C.-C., et al., Halogen-Light-Enhanced Metallorganic Decomposition of SrBi2Ta2O9 Ferroelectric Thin Films. Journal of The Electrochemical Society, 2010. 157(3): p. G85-G90.
[77] Leu, C.-C., et al., Photochemical-induced self-seeding effect on lead zirconate titanate thin film. Journal of Materials Chemistry, 2011. 21(34): p. 12991-13000.
[78] Hardy, A., et al., Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. Journal of the European Ceramic Society, 2009. 29(14): p. 3007-3013.
[79] Chen, Z., et al., Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel-hydrothermal method. Ceramics International (2011) 37: p. 2359–2364.
[80] Yang, H., et al., Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. Journal of sol-gel science and technology, 2011. 58(1): p. 238-243.
[81] Reddy, V.A., N.P.P. , and R.N. , Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3nano-particles. Journal of Alloys and Compounds, (2012) 543: p. 206–212.
[82] Petit, S., et al., Interpretation of the infrared spectrum of the NH4+-clays: application to the evaluation of the layer charge. Clay Minerals (t 999). 34: p. 543-549.
[83] Aguiar, E., et al., Low-temperature synthesis of nanosized bismuth ferrite by the soft chemical method. Ceramics International, 2013. 39(1): p. 13-20.
[84] Thomson, M.A., P.J. Melling, and A.M. Slepski, Real-time monitoring of isocyanate chemistry using a fiber-optic FTIR probe. POLYMER PREPRINTS-AMERICA-, 2001. 42(1): p. 310-311.
[85] Rodrigues, H.O., et al., BiFeO3ceramic matrix with Bi2O3or PbO added: M¨ ossbauer, Raman and dielectric spectroscopy studies. Physica B, (2011) 406: p. 2532–2539.
[86] Duan, Z., et al., Lattice dynamics and dielectric functions of multiferroic BiFeO3/c-sapphirefilms determined by infrared reflectance spectra and temperature-dependent Raman scattering. Thin Solid Films, (2012). 525 p. 188–194.
[87] Yan, F., M. Lai, and L. Lu, Domain structure and piezoelectric response in lanthanide rare earth-substituted multiferroic BiFeO3 thin films. Journal of Physics D: Applied Physics, 2012. 45(32): p. 325001.
[88] Raghavan, C., J. Kim, and S. Kim, Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film. Ceramics International, 2013. 39(4): p. 3563-3568.
[89] Annapu Reddy, V., N. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. Journal of Alloys and Compounds, 2012. 543: p. 206-212.
[90] Koiwa, I., et al., Effects of H2 Sintering and Pt Upper Electrode on Metallic Bi Content in Sr0.9Bi2.1Ta2O9 Thin Films for Ferroelectric Memories Prepared by Sol-Gel Method. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS, 1998. 37: p. 5192-5197.
[91] Liang, Y.-C., et al., Annealing-induced changes in the nanoscale electrical homogeneity of bismuth ferrite dielectric thin films. Ceramics International, 2011. 37(7): p. 2391-2396.
[92] Yunyi, W., et al., Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3. 25La0. 75Ti3O12 thin films prepared by rf-magnetron sputtering method. Journal of applied physics, 2009. 105(6): p. 061613.
[93] Lee, D., et al., Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Applied Physics Letters, 2005. 86(22): p. 222903.
[94] Ostos, C., et al., Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf-sputtering. Journal of applied physics, 2011. 110(2): p. 024114.
[95] Fang, L., et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Applied Physics Letters, 2010. 97(24): p. 242501.
[96] Wei, J. and D. Xue, Effect of non-magnetic doping on leakage and magnetic properties of BiFeO3 thin films. Applied surface science, 2011. 258(4): p. 1373-1376.
[97] Liang, Y.-C., Structural and Nanoscale Electrical Properties of Bismuth Ferrite Thin Films Annealed in Forming Gas. Physics Procedia, 2012. 32: p. 314-319.
[98] Lahmar, A., et al., Off-stoichiometry effects on BiFeO3 thin films. Solid State Ionics, 2011. 202(1): p. 1-5.
[99] Chung, C.-F. and J.-M. Wu, Low leakage BiFeO3 thin films fabricated by chemical solution deposition. Electrochemical and Solid-State Letters, 2005. 8(12): p. F63-F66.
[100] Yu, J., et al., Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity. Journal of crystal growth, 2001. 231(4): p. 568-576.
[101] Weast, R.C., M.J. Astle, and W.H. Beyer, CRC handbook of chemistry and physics. Vol. 69. 1988: CRC press Boca Raton, FL.