簡易檢索 / 詳目顯示

研究生: 陳叔妤
論文名稱: 鐵酸鉍薄膜之光化學效應研究
指導教授: 胡塵滌
口試委員: 胡塵滌
呂正傑
簡昭欣
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 141
中文關鍵詞: 鐵酸鉍鐵電薄膜旋鍍法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究照光輔助烘烤對溶膠-凝膠法(sol-gel)鍍製之鐵酸鉍薄膜的光化學效應。實驗分為兩部分,第一部分,BFO及B*FO(多補償5mol% Bi)薄膜分別於100℃下施加三種光源(Hal,UVA,UVC)照光輔助烘烤10分鐘;第二部分,基於溶液的吸收限界隨溫度上升會產生紅移現象,設計實驗將BFO薄膜分別於100℃ 和150℃ 兩種溫度下以三種光源照光輔助烘烤10分鐘。探討不同光源與烘烤溫度對薄膜結晶性、表面形貌及電性的影響,討論其可能的機制。
    FTIR分析結果,發現Bi溶液對鐵酸鉍薄膜照光輔助烘烤時的吸光行為比Fe溶液有較大的影響,此現象將改變BFO薄膜照光輔助烘烤後的特性,推測Bi溶液的吸光特性扮演關鍵角色。
    FTIR結果,UVC照光輔助烘烤確實可加速薄膜的有機物與氮化物分解、揮發的速率;拉曼光譜分析,發現UVC照光輔助的薄膜在焦化處理後,有助於鉍-氧(Bi-O)鍵結的形成,具有抑制高溫鉍揮發的效果,使薄膜在不另補償鉍的情況下即可維持化學計量比(Bi與Fe比例接近為1:1),因此以UVC照光輔助烘烤將可改善薄膜的結晶性及表面形貌,進而提升電性。溫度效應(溶液吸收限界的紅移現象),使UVA對BFO-B薄膜的作用變的有效且顯著,薄膜的特性表現也有所改善。
    依據各項分析結果與參考相關文獻,推測BFO薄膜特性受光影響之主要原因,為溶膠―凝膠鍍膜製程中受紫外光光照產生光化學反應,促進有機物及氮化物分解與揮發,因此會影響薄膜結晶性、優選方向及表面形貌,進而影響電性表現。


    目錄 摘要 II 第1章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究方向 3 第2章 文獻回顧 5 2-1 鐵電材料之簡介 5 2-1-1 鐵電材料晶體結構[3] 5 2-1-2 鐵電特性[8, 9] 5 2-1-3 鐵電材料遲滯行為與鐵電域[5] [6] 6 2-2 介電特性與電性簡介 7 2-2-1 極化現象與機制[12-14] 7 2-2-2 漏電流機制[9, 15-17] 8 2-3 鐵酸鉍(BiFeO3)材料 11 2-3-1 鐵酸鉍晶體結構 11 2-3-2 鐵酸鉍物理特性[25] 12 2-4 溶膠-凝膠(Sol-Gel)製程[29] 13 2-4-1 溶膠-凝膠法簡介[30, 31] 14 2-4-2 起始溶液的配製[31, 32] 14 2-4-3 鍍膜方式 16 2-4-4 低溫烘烤與焦化熱處理 16 2-4-5 高溫退火結晶處理 17 2-5 光化學反應之相關研究 17 2-5-1 光誘導結晶(Photo-Induced Crystallization)研究 17 2-5-2 鐵電薄膜之光輔助鍍膜製程之相關研究 19 2-5-2-1 光化學金屬有機沈積法之微圖案化製程 19 2-5-2-2 鐵電特性與紫外光輔助製程之相關研究 20 第3章 實驗方法與步驟 33 3-1 基板製備 33 3-1-1 起始基板 33 3-1-2 擴散阻絕層之製備 33 3-1-3 黏著層之製備 33 3-1-4 鉑金底電極之製備 34 3-2 鐵酸鉍薄膜製備 34 3-2-1 實驗藥品 34 3-2-2 鐵酸鉍溶膠製備 35 3-2-3 鐵酸鉍(BFO)薄膜的鍍製與照光輔助烘烤製程 36 3-2-4 照光光源介紹 37 3-2-5 鐵酸鉍退火結晶處理 38 3-2-6 試片代號介紹 38 3-3 紫外光-可見光光譜分析(UV-vis. Spectrum) 39 3-4 鐵酸鉍薄膜特性分析 40 3-4-1 物性分析 40 3-4-2 電性分析 42 第4章 結果與討論 48 4-1 紫外光―可見光光譜(UV-Vis. Spectrum) 48 4-2 傅立葉轉換紅外線光譜分析(FTIR Spectrum) 50 4-2-1 第一部分(烘烤後: A'; B') 50 4-2-2 第二部分(焦化後: A" ; B" ) 52 4-3 拉曼光譜儀(Raman) 53 4-4 XRD晶體結構分析 55 4-4-1 A組鐵酸鉍薄膜之XRD分析 56 4-4-2 B組鐵酸鉍薄膜之XRD分析 58 4-4-3 照光對鐵酸鉍結晶性的影響 58 4-4-4 薄膜X光繞射結晶優選方向與鐵電特性間之關係分析 60 4-5 表面微觀結構及橫截面分析(SEM) 60 4-5-1 A組鐵酸鉍薄膜表面及橫截面分析 60 4-5-2 B組鐵酸鉍薄膜表面及橫截面分析 63 4-5-3 照光對鐵酸鉍之表面形貌之影響 64 4-6 化學成分分析(EDS) 64 4-7 二次離子質譜儀(SIMS)―縱深分析 66 4-8 X光光電子質譜儀分析(XPS) 67 4-9 電流密度量測(I-V) 69 4-9-1 A組鐵酸鉍薄膜之電流密度分析 69 4-9-2 B組鐵酸鉍薄膜之電流密度分析 70 4-10 鐵電特性量測 71 4-10-1 A組鐵酸鉍薄膜之鐵電特性 71 4-10-2 B組鐵酸鉍薄膜之鐵電特性 73 第5章 結論 132 參考文獻 134 附錄1 141 表目錄 表 2 1無機氧化物薄膜的吸收限界與受紫外光照射後的結晶行為 23 表 3 1鉑金(Pt)底電極濺鍍條件 34 表 3 2實驗藥品資料表 35 表 3 3製程代號與烘烤熱製程條件 37 表 3 4試片條件及代號 38 表 3 5 FTIR光譜及拉曼光譜分析用試片條件及代號 39 表 4 1不同溫度下各前驅物溶液之吸收限界 74 表 4 2鐵酸鉍材料於文獻中的拉曼活性振動模位置 74 表 4 3鐵酸鉍薄膜之EDS化學成分分析 75 表 4 4鐵酸鉍(BFO)薄膜XPS分析之O1s三個譜峰面積比例 76 表 4 5鐵酸鉍(BFO)薄膜XPS分析之Fe2+及Fe3+譜峰面積比例 76 圖目錄 圖 2 1鈣鈦礦ABO3結構 23 圖 2 2鈣鈦礦結構示意圖 24 圖 2 3 BaTiO3晶體結構變化示意圖 24 圖 2 4 BaTiO3高於居禮溫度(Tc)與低於居禮溫度(Tc)結構變化圖 25 圖 2 5鐵電材料的電滯曲線 25 圖 2 6鈣鈦礦結構內鐵電域圖。 26 圖 2 7四種極化機制示意圖 26 圖 2 8介電常數隨頻率變化之示意圖 27 圖 2 9能障限制機制(a)蕭基特發射(b)穿隧效應 27 圖 2 10本體限制機制(a)空間電荷限制傳導(b)離子傳導 28 圖 2 11溶膠凝膠變化圖 28 圖 2 12起始溶液的三種塗佈法 29 圖 2 13浸鍍法 29 圖 2 14旋鍍法 29 圖 2 15鐵酸鉍之鈣鈦礦結構示意圖 30 圖 2 16扭曲鈣鈦礦型的鐵酸鉍晶體結構示意圖 30 圖 2 17鐵酸鉍的晶體結構示意圖 31 圖 2 18鐵酸鉍之鉍原子(Bi)與鐵氧原子(FeO6)構成的六面體 31 圖 2 19鐵酸鉍之鐵電極化方向與反鐵磁平面關係圖 32 圖 2 20鐵酸鉍G型反鐵磁示意圖 32 圖 3 1各前驅物原料化學結構 35 圖 3 2鐵酸鉍BFO溶膠配製流程圖 44 圖 3 3鐵酸鉍薄膜A組製備流程圖 44 圖 3 4鐵酸鉍薄膜B組製備流程圖 45 圖 3 5鐵酸鉍薄膜製備流程及照光輔助烘烤示意圖 45 圖 3 6高強度短波紫外燈光譜 46 圖 3 7高強度稍長波紫外燈光譜 46 圖 3 8鹵素燈光譜 46 圖 3 9鐵酸鉍電容結構示意圖 47 圖 4 1溶劑(MOE)之UV-Vis.吸收光譜 77 圖 4 2硝酸鉍(BiOx)溶液之UV-Vis.吸收光譜 77 圖 4 3硝酸鐵(FeOx)溶液之UV-Vis.吸收光譜 78 圖 4 4鐵酸鉍(BFO)溶液之UV-Vis.吸收光譜 78 圖 4 5(a) 硝酸鉍(BiOx)溶液變溫UV-Vis.吸收光譜 (b)取圖(a)中各曲線吸收度之波長-溫度關係圖 79 圖 4 6(a) 硝酸鐵(FeOx)溶液變溫UV-Vis.吸收光譜 (b)取圖(a)中各曲線吸收度之波長-溫度關係圖 80 圖 4 7(a) 鐵酸鉍(BFO)溶液變溫UV-Vis.吸收光譜(b)取圖(a)中各曲線吸收度之波長-溫度關係圖 81 圖 4 8 A組之BiOx薄膜之烘烤後(A')FTIR吸收光譜 82 圖 4 9 A組之FeOx薄膜之烘烤後(A')FTIR吸收光譜 82 圖 4 10 A組之BFO薄膜之烘烤後(A')FTIR吸收光譜 83 圖 4 11 A組之B*FO薄膜之烘烤後(A')FTIR吸收光譜 83 圖 4 12 B組之BFO薄膜之烘烤後(B')FTIR吸收光譜 84 圖 4 13 A組之BiOx薄膜之焦化後(A")FTIR吸收光譜 84 圖 4 14 A組之FeOx薄膜之焦化後(A")FTIR吸收光譜 85 圖 4 15 A組之BFO薄膜之焦化後(A")FTIR吸收光譜 85 圖 4 16 A組之B*FO薄膜之焦化後(A")FTIR吸收光譜 86 圖 4 17 B組之BFO薄膜之焦化後(B")FTIR吸收光譜 86 圖 4 18 A組之BFO薄膜之退火後(A)FTIR吸收光譜 87 圖 4 19 A組之BFO薄膜之烘烤後(A')拉曼光譜 87 圖 4 20 B組之BFO薄膜之烘烤後(B')拉曼光譜 88 圖 4 21 A組之BFO薄膜之焦化後(A")拉曼光譜 88 圖 4 22 B組之BFO薄膜之焦化後(B")拉曼光譜 89 圖 4 23 A組之BFO薄膜之退火後(A)拉曼光譜 89 圖 4 24 B組之BFO薄膜之退火後(B)拉曼光譜 90 圖 4 25 鐵酸鉍薄膜的JCPD card(#74-2016) 91 圖 4 26 BFO-A薄膜之XRD分析 91 圖 4 27 BFO-A薄膜各繞射峰強度比例 92 圖 4 28 BFO-A薄膜垂直膜面極化分量總和 92 圖 4 29 BFO-A的Ref及UVC薄膜於不同退火條件熱處理之XRD分析 93 圖 4 30 B*FO-A薄膜之XRD分析 93 圖 4 31 B*FO-A薄膜各繞射峰強度比例 94 圖 4 32 B*FO-A薄膜垂直膜面極化分量總和 94 圖 4 33 BFO-B薄膜之XRD分析 95 圖 4 34 BFO-B薄膜各繞射峰強度比例 95 圖 4 35 BFO-B薄膜垂直膜面極化分量總和 96 圖 4 36 BFO-A-Ref薄膜SEM表面形貌(a)80K(b)30K 97 圖 4 37 BFO-A-Ref薄膜SEM橫截面形貌 97 圖 4 38 BFO-A-Hal薄膜SEM表面形貌(a)80K(b)30K 98 圖 4 39 BFO-A-Hal薄膜SEM橫截面形貌 98 圖 4 40 BFO-A-UVA薄膜SEM表面形貌(a)80K(b)30K 99 圖 4 41 BFO-A-UVA薄膜SEM橫截面形貌 99 圖 4 42 BFO-A-UVC薄膜SEM表面形貌(a)80K(b)30K 100 圖 4 43 BFO-A-UVC薄膜SEM橫截面形貌 100 圖 4 44 BFO-A-Ref-475(1hr)薄膜SEM表面形貌(a)80K(b)30K 101 圖 4 45 BFO-A-Ref-475(1hr)薄膜SEM橫截面形貌 101 圖 4 46 BFO-A-UVC-475(1hr)薄膜SEM表面形貌(a)80K(b)30K 102 圖 4 47 BFO-A-UVC-475(1hr)薄膜SEM橫截面形貌 102 圖 4 48 BFO-A-Ref-450(2hr)薄膜SEM表面形貌(a)80K(b)30K 103 圖 4 49 BFO-A-Ref-450(2hr)薄膜SEM橫截面形貌 103 圖 4 50 BFO-A-UVC-450(2hr)薄膜SEM表面形貌(a)80K(b)30K 104 圖 4 51 BFO-A-UVC-450(2hr)薄膜SEM橫截面形貌 104 圖 4 52 B*FO-A-Ref薄膜SEM表面形貌(a)80K(b)30K 105 圖 4 53 B*FO-A-Ref薄膜SEM橫截面形貌 105 圖 4 54 B*FO-A-Hal薄膜SEM表面形貌(a)80K(b)30K 106 圖 4 55 B*FO-A-Hal薄膜SEM 橫截面形貌 106 圖 4 56 B*FO-A-UVA薄膜SEM表面形貌(a)80K(b)30K 107 圖 4 57 B*FO-A-UVA薄膜SEM橫截面形貌 107 圖 4 58 B*FO-A-UVC薄膜SEM表面形貌(a)80K(b)30K 108 圖 4 59 B*FO-A-UVC薄膜SEM橫截面形貌 108 圖 4 60 BFO-B-Ref薄膜SEM表面形貌(a)80K(b)30K 109 圖 4 61 BFO-B-Ref薄膜SEM橫截面形貌 109 圖 4 62 BFO-B-Hal薄膜SEM表面形貌(a)80K(b)30K 110 圖 4 63 BFO-B-Hal薄膜SEM橫截面形貌 110 圖 4 64 BFO-B-UVA薄膜SEM表面形貌(a)80K(b)30K 111 圖 4 65 BFO-B-UVA薄膜SEM橫截面形貌 111 圖 4 66 BFO-B-UVC薄膜SEM表面形貌(a)80K(b)30K 112 圖 4 67 BFO-B-UVC薄膜SEM橫截面形貌 112 圖 4 68 BFO-A-Ref薄膜之SIMS成分縱深分析 113 圖 4 69 BFO-A-Hal薄膜之SIMS成分縱深分析 113 圖 4 70 BFO-A-UVA薄膜之SIMS成分縱深分析 114 圖 4 71 BFO-A-UVC薄膜之SIMS成分縱深分析 114 圖 4 72 BFO-A薄膜XPS分析全譜圖 115 圖 4 73 BFO-A薄膜之元素鉍(Bi) XPS分析 115 圖 4 74 BFO-A薄膜之元素氧(O) XPS分析 116 圖 4 75 BFO-A薄膜之元素鐵(Fe) XPS分析 116 圖 4 76 BFO-B薄膜XPS分析全譜圖 117 圖 4 77 BFO-B薄膜之元素鉍(Bi) XPS分析 117 圖 4 78 BFO-B薄膜之元素氧(O) XPS分析 118 圖 4 79 BFO-B薄膜之元素鐵(Fe) XPS分析 118 圖 4 80 BFO-A-Ref、B*FO-A-Ref及BFO-B-Ref薄膜之電流密度分析 119 圖 4 81 BFO-A薄膜之電流密度分析 119 圖 4 82 BFO-A的Ref及UVC薄膜於不同退火條件熱處理之電流密度分析 120 圖 4 83 B*FO-A薄膜之電流密度分析 120 圖 4 84 BFO-B薄膜之電流密度分析 121 圖 4 85 BFO-A-Ref薄膜的電滯曲線 121 圖 4 86 BFO-A-Hal薄膜的電滯曲線 122 圖 4 87 BFO-A-UVA薄膜的電滯曲線 122 圖 4 88 BF-A-UVC薄膜的電滯曲線 123 圖 4 89 BFO-A-Ref-475(1hr)薄膜的電滯曲線 123 圖 4 90 BFO-A-UVC-475(1hr)薄膜的電滯曲線 124 圖 4 91 BFO-A-ROef-450(2hr)薄膜的電滯曲線 124 圖 4 92 BFO-A-UVC-450(2hr)薄膜的電滯曲線 125 圖 4 93 B*FO-A-Ref薄膜的電滯曲線 125 圖 4 94 B*FO-A-Ref薄膜的電滯曲線 126 圖 4 95 B*FO-A-UVA薄膜的電滯曲線 126 圖 4 96 B*FO-A-UVC薄膜的電滯曲線 127 圖 4 97 BFO-B-Ref薄膜的電滯曲線 127 圖 4 98 BFO-B-Hal薄膜的電滯曲線 128 圖 4 99 BFO-B-UVA薄膜的電滯曲線 128 圖 4 100 BFO-B-UVC薄膜的電滯曲線 129 圖 4 101 BFO-A薄膜的2Pr與2Ec關係圖 130 圖 4 102 BFO-A的Ref及UVC 薄膜於不同退火條件處理之2Pr與2Ec關係圖 130 圖 4 103 B*FO-A薄膜的2Pr與2Ec關係圖 131 圖 4 104 BFO-B薄膜的2Pr與2Ec關係圖 131

    [1] 鄭佩慈, 鐵電材料之特性與應用. 儀科中心簡訊, 2005(68): p. 10-11.
    [2] 陳瀅如, "添加微細粉對鈦酸鉛鍍膜製程與特性之研究". 清華大學碩士論文, (1998).
    [3] 陳銘森, "鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究". 清華大學博士論文, (1996).
    [4] Schwartz, R.W., Chemical solution deposition of perovskite thin films. Chemistry of materials, 1997. 9(11): p. 2325-2340.
    [5] Xu, Y., Ferroelectric materials and their applications1991: North Holland.
    [6] 江長凌,林煥祐,朱智謙, ”半導體製程中高介電(High K)材料的介紹”. 台灣大學化研所.
    [7] Kamlah, M., Ferroelectric and ferroelastic piezoceramics–modeling of electromechanical hysteresis phenomena. Conti199nuum Mechanics and Thermodynamics, 2001. 13(4): p. 219-268.
    [8] 鍾為烈, 鐵電體物理學. 科學出版社, (1996).
    [9] 李雅明, 吳世全, and 陳宏名, 鐵電記憶元件, 電子月刊第二卷第九期.
    [10] Lines, M.E. and A.M. Glass, Principles and applications of ferroelectrics and related materials1977: Oxford University Press.
    [11] G.Bertotti, I.M.a., The Science of Hysteresis. Elsevier (2005). Volume 3.
    [12] Moulson, A.J. and J.M. Herbert, Electroceramics: Materials, Properties, Applications2003: Wiley.
    [13] 李雅明, 固態電子學1995: 全華.
    [14] 吳朗, 電子陶瓷: 介電1994: 全欣.
    [15] Yang, Y., et al., Schottky barrier effects in the electronic conduction of sol–gel derived lead zirconate titanate thin film capacitors. Journal of applied physics, 1998. 84(9): p. 5005-5011.
    [16] Stolichnov, I. and A. Tagantsev, Space-charge influenced-injection model for conduction in Pb (ZrxTi1− x) O3 thin films. Journal of applied physics, 1998. 84(6): p. 3216-3225.
    [17] Warren, W.L., D. Dimos, and R.M. Waser, Degradation mechanisms in ferroelectric and high-permittivity perovskites. MRS bulletin, 1996. 21(07): p. 40-45.
    [18] Ohring, M., Materials science of thin films2001: Academic press.
    [19] Ivanov, D., et al., Structural and dielectric properties of spin‐on barium‐strontium titanate thin films. Journal of applied physics, 1995. 77(6): p. 2666-2671.
    [20] Wolf, S. and R. Tauber, Silicon processing for the VLSI era (2000), Lattice Press.
    [21] Kubel, F. and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science, 1990. 46(6): p. 698-702.
    [22] Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003. 299(5613): p. 1719-1722.
    [23] Wu, Y., et al., Strong magnetoelectric coupling in multiferroic BiFeO3–Pb (Zr 0.52 Ti 0.48) O3 composite films derived from electrophoretic deposition. Applied Physics Letters, 2008. 93(19): p. 192915-192915-3.
    [24] Yang, S., et al., Photovoltaic effects in BiFeO3. Applied Physics Letters, 2009. 95(6): p. 062909.
    [25] 楊展其, 梁振偉, and 朱英豪, 多鐵材料物理鉍鐵氧之磁電耦合與應用. 物理雙月刊, 2009. 31(5): p. 468-475.
    [26] Lebeugle, D., et al., Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Physical Review B, 2007. 76(2): p. 024116.
    [27] Ederer, C. and N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Physical Review B, 2005. 71(6): p. 060401.
    [28] Chu, Y.-H., et al., Controlling magnetism with multiferroics. Materials Today, 2007. 10(10): p. 16-23.
    [29] 陳三元, 強介電薄膜之液相化學法製作. 工業材料, 1995. 108: p. 100-111.
    [30] 蔡裕榮 and 周禮君, 以溶膠凝膠法製備透明導電氧化物薄膜的探討. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2002. 60(3): p. 307-318.
    [31] 賴彥傑, 以溶膠凝膠法製作氧化鋅摻鎂之光學性質分析. 2010.
    [32] Dislich, H. and P. Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings. Journal of Non-Crystalline Solids, 1982. 48(1): p. 11-16.
    [33] Sanchez, C., et al., Non-Cryst. Solids, 1988. 100: p. 650.
    [34] Schmidt, H. and M. Mennig, Wet coating technologies for glass. Saarbrucken, Germany, 2000.
    [35] Arai, K., et al., Two‐photon processes in defect formation by excimer lasers in synthetic silica glass. Applied Physics Letters, 1988. 53(20): p. 1891-1893.
    [36] Glinka, Y.D., S.-H. Lin, and Y.-T. Chen, Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light. Physical Review B, 2000. 62(7): p. 4733.
    [37] Primak, W., Determination of small dilatations and surface stress by birefringence measurements. Surface Science, 1969. 16: p. 398-427.
    [38] Fiori, C. and R. Devine, Evidence for a wide continuum of polymorphs in a-SiO2. Physical Review B, 1986. 33(4): p. 2972.
    [39] Imai, H., et al., Ultraviolet-reduced reduction and crystallization of indium oxide films. Journal of applied physics, 1999. 85(1): p. 203-207.
    [40] Chakarian, V., et al., Formation of surface F centers on CaF2/Si (111). Physical Review B, 1993. 48(24): p. 18332.
    [41] Taylor, D. and B. Fabes, Laser processing of sol-gel coatings. Journal of Non-Crystalline Solids, 1992. 147: p. 457-462.
    [42] Exarhos, G.J., N.J. Hess, and S. Wood. Transient stress evolution and crystallization in laser-irradiated amorphous titania sol-gel films. in Laser-Induced Damage in Optical Materials: 1991. 1992. International Society for Optics and Photonics.
    [43] Imai, H., et al., Significant densification of sol‐gel derived amorphous silica films by vacuum ultraviolet irradiation. Journal of applied physics, 1996. 79(11): p. 8304-8309.
    [44] Imai, H., et al., Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films. Journal of sol-gel science and technology, 1998. 13(1-3): p. 991-994.
    [45] Chen, M.-F., et al., Laser direct write patterning technique of indium tin oxide film. Thin Solid Films, 2007. 515(24): p. 8515-8518.
    [46] Nagase, T., T. Ooie, and J. Sakakibara, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films. Thin Solid Films, 1999. 357(2): p. 151-158.
    [47] Asakuma, N., et al., Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp. Journal of sol-gel science and technology, 2003. 26(1-3): p. 181-184.
    [48] Asakuma, N., et al., Photocrystallization of amorphous ZnO. Journal of applied physics, 2002. 92(10): p. 5707-5710.
    [49] Fang, Q., et al., High- k dielectrics by UV photo-assisted chemical vapour deposition. Microelectronic engineering, 2003. 66(1): p. 621-630.
    [50] Tao, X., et al., CO2 laser-induced crystallization of sol–gel-derived indium tin oxide films. Applied Physics A, 2009. 96(3): p. 741-749.
    [51] Asakuma, N., et al., Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films. Journal of sol-gel science and technology, 2000. 19(1-3): p. 333-336.
    [52] Lee, J.K., et al., Characterization and elimination of dry etching damaged layer in Pt/Pb (Zr 0.53 Ti 0.47) O3/Pt ferroelectric capacitor. Applied Physics Letters, 1999. 75(3): p. 334-336.
    [53] Soyer, C., et al., Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution. Journal of applied physics, 2002. 92(2): p. 1048-1055.
    [54] Park, H.-H., H.-H. Park, and R.H. Hill, Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition. Applied surface science, 2004. 237(1): p. 427-432.
    [55] Park, H.-H., H.-H. Park, and R.H. Hill, Electrical properties of PLZT thin films formed by photochemical metal-organic deposition with various Zr/Ti ratios. Journal of electroceramics, 2006. 17(2-4): p. 135-139.
    [56] Park, H.-H., et al., Electrical and ferroelectric properties of SBT thin films formed by photochemical metal-organic deposition. Sensors and Actuators B: Chemical, 2007. 126(1): p. 289-293.
    [57] Yan, F., et al., In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO3 film. Journal of Alloys and Compounds, 2013. 570: p. 19-22.
    [58] Kim, C.J., et al., Investigation of the drying temperature dependence of the orientation in sol–gel processed PZT thin films. Journal of materials science, 1997. 32(5): p. 1213-1219.
    [59] Li, A., et al., Effects of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition. Journal of applied physics, 2000. 88(2): p. 1035-1041.
    [60] Bhaskar, S., et al., Influence of Precursor Solutions on the Ferroelectric Properties of Sol‐Gel‐Derived Lanthanum‐Modified Lead Titanate (PLT) Thin Films. Journal of the American Ceramic Society, 2004. 87(3): p. 384-390.
    [61] Yang, C.C., et al., Preparation of (100)‐oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb (Zr0. 53Ti0. 47) O3. Applied Physics Letters, 1995. 66(20): p. 2643-2645.
    [62] Park, G.-T., et al., Orientation control of sol-gel-derived lead zirconate titanate film by addition of polyvinylpyrrolidone. Journal of materials research, 2005. 20(4): p. 882-888.
    [63] Hwang, J.-S., et al., The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films. Sensors and Actuators A: Physical, 2005. 117(1): p. 137-142.
    [64] Hwang, J.-Y., et al., UV-exposure effect on ferroelectricity of the sol-gel processed PZT thin film. Integrated Ferroelectrics, 2004. 62(1): p. 97-103.
    [65] LEE, S.-A., et al., A Study of UV-Photolysis Effects on Ferroelectricity in PZT Thin Films. Integrated Ferroelectrics, 2004. 64(1): p. 201-206.
    [66] Bretos, I., et al., Heterostructure and compositional depth profile of low-temperature processed lead titanate-based ferroelectric thin films prepared by photochemical solution deposition. Chemistry of materials, 2008. 20(4): p. 1443-1450.
    [67] Calzada, M., et al., Low-temperature ultraviolet sol-gel photoannealing processing of multifunctional lead-titanate-based thin films. Journal of materials research, 2007. 22(07): p. 1824-1833.
    [68] Kumar, S., et al., Control of microstructure and functional properties of PZT thin films via UV assisted pyrolysis. Journal of sol-gel science and technology, 2007. 42(3): p. 309-314.
    [69] Huang, Z., Q. Zhang, and R. Whatmore, Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films. Journal of applied physics, 1999. 86(3): p. 1662-1669.
    [70] Wu, A., et al., Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films. Chemistry of materials, 2003. 15(5): p. 1147-1155.
    [71] Chen, S.Y. and I.W. Chen, Temperature–Time Texture Transition of Pb (Zr1− xTix) O3 Thin Films: I, Role of Pb‐rich Intermediate Phases. Journal of the American Ceramic Society, 1994. 77(9): p. 2332-2336.
    [72] Chen, S.-Y., Texture evolution and electrical properties of oriented PZT thin films. Materials chemistry and physics, 1996. 45(2): p. 159-162.
    [73] Wu, A., et al., Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films. Journal of the American Ceramic Society, 2002. 85(3): p. 641-646.
    [74] Gong, W., et al., Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films. Journal of the European Ceramic Society, 2004. 24(10): p. 2977-2982.
    [75] Habouti, S., C.-H. Solterbeck, and M. Es-Souni, UV assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties. Journal of sol-gel science and technology, 2007. 42(3): p. 257-263.
    [76] Leu, C.-C., et al., Halogen-Light-Enhanced Metallorganic Decomposition of SrBi2Ta2O9 Ferroelectric Thin Films. Journal of The Electrochemical Society, 2010. 157(3): p. G85-G90.
    [77] Leu, C.-C., et al., Photochemical-induced self-seeding effect on lead zirconate titanate thin film. Journal of Materials Chemistry, 2011. 21(34): p. 12991-13000.
    [78] Hardy, A., et al., Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. Journal of the European Ceramic Society, 2009. 29(14): p. 3007-3013.
    [79] Chen, Z., et al., Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel-hydrothermal method. Ceramics International (2011) 37: p. 2359–2364.
    [80] Yang, H., et al., Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. Journal of sol-gel science and technology, 2011. 58(1): p. 238-243.
    [81] Reddy, V.A., N.P.P. , and R.N. , Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3nano-particles. Journal of Alloys and Compounds, (2012) 543: p. 206–212.
    [82] Petit, S., et al., Interpretation of the infrared spectrum of the NH4+-clays: application to the evaluation of the layer charge. Clay Minerals (t 999). 34: p. 543-549.
    [83] Aguiar, E., et al., Low-temperature synthesis of nanosized bismuth ferrite by the soft chemical method. Ceramics International, 2013. 39(1): p. 13-20.
    [84] Thomson, M.A., P.J. Melling, and A.M. Slepski, Real-time monitoring of isocyanate chemistry using a fiber-optic FTIR probe. POLYMER PREPRINTS-AMERICA-, 2001. 42(1): p. 310-311.
    [85] Rodrigues, H.O., et al., BiFeO3ceramic matrix with Bi2O3or PbO added: M¨ ossbauer, Raman and dielectric spectroscopy studies. Physica B, (2011) 406: p. 2532–2539.
    [86] Duan, Z., et al., Lattice dynamics and dielectric functions of multiferroic BiFeO3/c-sapphirefilms determined by infrared reflectance spectra and temperature-dependent Raman scattering. Thin Solid Films, (2012). 525 p. 188–194.
    [87] Yan, F., M. Lai, and L. Lu, Domain structure and piezoelectric response in lanthanide rare earth-substituted multiferroic BiFeO3 thin films. Journal of Physics D: Applied Physics, 2012. 45(32): p. 325001.
    [88] Raghavan, C., J. Kim, and S. Kim, Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film. Ceramics International, 2013. 39(4): p. 3563-3568.
    [89] Annapu Reddy, V., N. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. Journal of Alloys and Compounds, 2012. 543: p. 206-212.
    [90] Koiwa, I., et al., Effects of H2 Sintering and Pt Upper Electrode on Metallic Bi Content in Sr0.9Bi2.1Ta2O9 Thin Films for Ferroelectric Memories Prepared by Sol-Gel Method. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS, 1998. 37: p. 5192-5197.
    [91] Liang, Y.-C., et al., Annealing-induced changes in the nanoscale electrical homogeneity of bismuth ferrite dielectric thin films. Ceramics International, 2011. 37(7): p. 2391-2396.
    [92] Yunyi, W., et al., Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3. 25La0. 75Ti3O12 thin films prepared by rf-magnetron sputtering method. Journal of applied physics, 2009. 105(6): p. 061613.
    [93] Lee, D., et al., Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Applied Physics Letters, 2005. 86(22): p. 222903.
    [94] Ostos, C., et al., Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf-sputtering. Journal of applied physics, 2011. 110(2): p. 024114.
    [95] Fang, L., et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Applied Physics Letters, 2010. 97(24): p. 242501.
    [96] Wei, J. and D. Xue, Effect of non-magnetic doping on leakage and magnetic properties of BiFeO3 thin films. Applied surface science, 2011. 258(4): p. 1373-1376.
    [97] Liang, Y.-C., Structural and Nanoscale Electrical Properties of Bismuth Ferrite Thin Films Annealed in Forming Gas. Physics Procedia, 2012. 32: p. 314-319.
    [98] Lahmar, A., et al., Off-stoichiometry effects on BiFeO3 thin films. Solid State Ionics, 2011. 202(1): p. 1-5.
    [99] Chung, C.-F. and J.-M. Wu, Low leakage BiFeO3 thin films fabricated by chemical solution deposition. Electrochemical and Solid-State Letters, 2005. 8(12): p. F63-F66.
    [100] Yu, J., et al., Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity. Journal of crystal growth, 2001. 231(4): p. 568-576.
    [101] Weast, R.C., M.J. Astle, and W.H. Beyer, CRC handbook of chemistry and physics. Vol. 69. 1988: CRC press Boca Raton, FL.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE