簡易檢索 / 詳目顯示

研究生: 劉國良
Liu, Kuo-Liang
論文名稱: 新穎微元件應用於臨場穿透式電子顯微鏡之濕式環境下活體生物觀察
Novel Microchip (K-kit) for In-situ Transmission Electron Microscopy of Living Organisms in Aqueous Conditions
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 91
中文關鍵詞: 穿透式電子顯微鏡試片裝置活體生物電子能量損失臨場穿透式電子顯微鏡
外文關鍵詞: transmission electron microscopy, K-kit, living organisms, electron energy-loss spectroscopy, in situ TEM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微機電技術開發出ㄧ種新穎且可拋棄式的微元件(命名為K-kit),做為一種裝載試片的裝置,K-kit能使活體生物在液態環境下可直接於臨場穿透式電子顯微鏡進行觀察,其中K-kit包含電子束可穿透的二氧化矽奈米薄膜,並且可使用於不需改裝之穿透式電子顯微鏡。本研究經模擬指出,當入射電子束電流密度為30 pA/cm2,對於磷鎢酸負染色且密封於K-kit內的活體的細菌,其解析度大約可達2.2奈米,實驗上透過K-kit,成功的利用穿透式電子顯微鏡,觀察到活體的大腸桿菌、寬8到18奈米成束的活體克雷白氏肺炎桿菌第三型線毛,以及克雷白氏肺炎桿菌還原碲金屬的過程。
    在拍攝穿透式電子顯微鏡影像之前,實驗發現克雷白氏肺炎桿菌可在密封於K-kit 12小時後,具有超過八成的存活率。除此之外,我們也試驗密封在K-kit的克雷白氏肺炎桿菌(革蘭氏陰性菌)和啤酒酵母菌經過電子束照射後的存活能力,研究發現在穿透式電子顯微鏡的電子束連續照射下,多數的克雷白氏肺炎桿菌可存活約14秒,而啤酒酵母菌則可存活約42秒。藉由電子能量損失能譜儀之量測數據,本研究計算出電子損失於克雷白氏肺炎桿菌和啤酒酵母菌的能量分別為329.1 eV nm-3 and 405.3 eV nm-3,經過比較其表面構造後,發現啤酒酵母菌具有較緊密且共價鍵結的細胞壁,克雷白氏肺炎桿菌的外膜則是為較鬆散的夾膜多醣體所構成,可能是導致克雷白氏肺炎桿菌顯示出比啤酒酵母菌更容易受電子照射所影響的原因。
    本研究更進一步利用K-kit在穿透式電子顯微鏡下,觀察克雷白氏肺炎桿菌還原碲金屬的生物反應長達12.5小時,比較在有氧及厭氧的環境下有明顯不同碲金屬還原的樣貌。經過以上的實驗結果證實,本研究開發的K-kit確實可以應用於臨場穿透式電子顯微鏡,於濕式環境下,進行活體生物觀察和即時的生物反應觀測。


    A novel and disposable microchip (named as K-kit) with electron-transparent SiO2 nano-membranes was developed using microelectromechanical system techniques and used as a specimen kit for in situ imaging of living organisms in an aqueous condition by transmission electron microscopy (TEM) without equipment modification. The resolving power of living bacterial cells negatively stained with phosphotungstic acid was theoretically calculated to be 2.2 nm in K-kit at incident current density of 30 pA/cm2. Experimentally, this K-kit which can enclose aqueous specimens enabled the successful TEM observation of living Escherichia coli cells, the 8-18 nm type 3 fimbriae of living Klebsiella pneumoniae, and the tellurite reduction process in K. pneumoniae in-situ.
    The survival ratio of K. pneumoniae sealed in the K-kit for 12 h exceeded 80% before TEM imaging. Besides, the viability of bacterial cells sealed in the K-kits during TEM electron irradiation was examined. The K. pneumoniae (gram-negative bacteria) and Saccharomyces cerevisiae (yeast cells) can stay alive in K-kit after continuous TEM imaging for up to 14 s and 42 s, respectively. Utilizing the measurement by electron energy-loss spectroscopy, the total electron energy of 329.1 eV nm-3 and 405.3 eV nm-3 dissipated in K. pneumoniae and S. cerevisiae were calculated, respectively. By the comparison of their surface structures, S. cerevisiae cells exhibit more dense-packed and covalently linked cell walls than the loosely attached capsular polysaccharides on the outer membrane of K. pneumoniae. It is possible that K. pneumoniae is more susceptible to electron beam irradiation compared to S. cerevisiae.
    Furthermore, the bio-reaction, tellurite reduction in K. pneumonia, was in situ monitored by TEM for 12.5 h through the use of the K-kit. The different tellurite reduction profiles in cells grown in aerobic and anaerobic environments can be also clearly revealed. These results demonstrate that the K-kit developed in this study can be useful for observing living organisms and in situ monitoring bio-reaction.

    摘要……………………. i Abstract……. iii 誌謝………… v Contents……. viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Biological Transmission Electron Microscopy 4 2.1.1Conventional transmission electron microscopy……………...4 2.1.2Cryo-transmission electron microscopy (Cryo-TEM)………...5 2.2 Modification of Electron Microscopes for Observation of Wet Samples. 6 2.2.1 Environmental transmission electron microscopy (ETEM) 6 2.2.2 Scanning electron microscopy for wet biological specimens .9 2.3 Specimen Damage by Electron Beam Irradiation 11 2.3.1 Electron-specimen interaction……………………………….11 2.3.2 Damage processes in materials……………………………...12 Chapter 3 Theory of TEM Resolution and Calculation of Electron Energy Loss 13 3.1 Signal to Noise Ratio and Rose’s Criteria for TEM Resolution……… 13 3.2 Calculation of Electron Energy Loss in the Specimen 15 3.3 Log-Ratio Formula for Calculation of Specimen Thickness 15 Chapter 4 Experimental 19 4.1 Process Flow………………………………………………………19 4.2 K-kit Microchip Fabrication 21 4.3 Cell Cultures 24 4.3.1 Bacteria and Yeast Cell Cultures 24 4.3.2 Human hepatocyte (HepG2) culture 25 4.4 Cell Stain 25 4.4.1 Fluorescent stain of cells for fluorescent microscopy 25 4.4.2 Negative stain of bacterial cells for TEM imaging 26 4.5 Tellurium Reduction by Klebsiella pneumoniae 27 4.5.1 Sample preparation of tellurite reduction in K. pneumoniae for TEM imaging 27 4.5.2 Sealing the K. pneumoniae in K-kit for Long-term and in situ imaging of tellurite reduction by TEM M 28 Chapter 5 Experimental Instruments and Operation 29 5.1 Transmission Electron Microscope (TEM) 29 5.1.1 Minimum exposure operation………………..……………...29 5.1.2 Elecron energy loss spectroscope (EELS) 31 Chapter 6 Result and Disscussion 32 6.1 TEM Specimen Kit (K-kit) Design and Fabrication 32 6.2 Survival Ratio of the Cells Sealed in K-kit 37 6.3 Viability of Bacterial Cells after TEM Imaging 42 6.4 TEM Resolution of Living Cells under Aqueous Conditions 44 6.5 Viability of Bacterial Cells Exposed to the Electron Beam for Various Durations 48 6.6 Electron Energy Dissipation in Living Cells Measured using In-situ EELS 53 6.7 The Susceptibility of Living Cells to Electron Beam Irradiation 63 6.8 In situ TEM Observation of Tellurite Reduction by K. pneumoniae …………………………………………………………………..65 6.8.1 Characterization of tellurite-nanopartical reduction in K. pneumoniae using TEM 65 6.8.2 In situ imaging of tellurite reduction in K. pneumoniae by TEM 67 Chapter 7 Conclusion 71 Chapter 8 Future Prospects 74 Reference ……………………………………………………………….76 List of Publications 91

    1 Heide, H. G. Eletron microscopic observation of specimens under controlled gas pressure. The Journal of Cell Biology. 13, 147 (1962).
    2 Bergelson, J. M. New (fluorescent) light on poliovirus entry. Trends in Microbiology. 16, 4 (2008).
    3 Marko Lampe, J. A. G. B., Thomas Endress, Bärbel Glass, Stefan Riegelsberger, and Hans-Georg Kräusslich, D. C. L., Christoph Bräuchle, Barbara Müller. Double-labelled HIV-1 particles for study of virus–cell interaction. Virology. 360, 13 (2007).
    4 Dorset, D. L. and Zemlin, F. Specimen movement in electron-irradiated paraffin crystals -- A model for initial beam damage. Ultramicroscopy. 21, 263 (1987).
    5 Todoriki, S., Hasan, M., Miyanoshita, A., Imamura, T. and Hayashi, T. Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera : Curculionidae) using comet assay. Radiation Physics and Chemistry. 75, 292 (2006).
    6 Timo K. Korhonen, E. T., Helena Ranta, and Kielo Haahtela. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots. Journal of Bacteriology. 155, 6 (1983).
    7 Ullmann, R. P. A. U. Klebsiella spp. as Nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews. 11, 15 (1998).
    8 Ann-mari Tarkkanen, R. V., Steven Clegg, and Timo K. Korhonen. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary Bladder cells. Infection and Immunity. 65, 4 (1997).
    9 Ohad Medalia, I. W., Achilleas S.Frangakis, and Daniela Nicastro, G. n. G., Wolfgang Baumeister. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 5 (2002).
    10 Medalia, O.. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 1209 (2002).
    11 Hansen, P. L.. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science. 295, 2053 (2002).
    12 Parsons, D. F. Structure of wet specimens in electron-microscopy. Science. 186, 407 (1974).
    13 Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nature Materials. 2, 532 (2003).
    14 Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Letters. 6, 238 (2006).
    15 Stephan Thiberge, A. N., David Sprinzak, Opher Gileadi, Vered Behar, Ory Zik, and Yehuda Chowers, S. M., Joseph Schlessinger, and Elisha Moses. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proceedings of the National Academy of Sciences.101, 6 (2004).
    16 Jongea, N. de D., Kremers, G. J. and Piston, D. W.. Electron microscopy of whole cells in liquid with nanometer resolution. Proceedings of the National Academy of Sciences 106, 6 (2009).
    17 Liu, K. L., Wu, C. C., Huang, Y. J., Peng,H. L. Chang, H. Y. and Chang, P., Hsu, L., Yew, T. R. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on a Chip. 8, 7 (2008).
    18 Kobayashi, T., Fujiyoshi, Y., Iwatsu, F. and Uyeda, N. High-resolution TEM images of zinc phthalocyanine polymorphs in thin films. Acta Crystallographica Section A. 37, 692 (1981).
    19 Ltd, J. JEM-2010 instruction manual, 5–57–60 (1991).
    20 Molecular Probes, I. Product Information Sheet. LIVE/DEAD BacLight TM Bacterial Viability Kits. Molecular Probes Inc., Eugene Oregon. (1997).
    21 Chen, Y. T. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 337, 189 (2004).
    22 Vavrova, S. Analysis of the tellurite resistance determinant on the pNT3B derivative of the pTE53 plasmid from uropathogenic Escherichia coli. Biometals. 19, 453 (2006).
    23 Chang, B. J. Measurement of the adhesive force between a single Klebsiella pneumoniae type 3 fimbria and collagen IV using optical tweezers. Biochemical and Biophysical Research Communications. 350, 33 (2006).
    24 Huang, Y. J., Wu, C. C., Chen, M. C., Fung, C. P. and Peng, H. L. Characterization of the type 3 fimbriae with different MrkD adhesins: Possible role of the MrkD containing an RGD motif. Biochemical and Biophysical Research Communications. 350, 537 (2006).
    25 Surjit, M. B. L., Kumar, P., Chow, V. T. K. and Lala, S. K. Biochemical and Biophysical Research Communications. 317, 7 (2004).
    26 Lipke, P. N. and Ovalle, R. Cell wall architecture in yeast: New structure and new challenges. Journal of Bacteriology. 180, 3735 (1998).
    27 Kollar, R. Architecture of the yeast cell wall - beta(1->6)-glucan interconnects mannoprotein, beta(1-3)-glucan, and chitin. Journal of Biological Chemistry. 272, 17762 (1997).
    28 Stokke, B. T., Elgsaeter, A., Hara, C., Kitamura, S. and Takeo, K. Physicochemical properties of (1-6)-branched (1- 3)-Beta-D-Glucans physical dimensions estimated from hydrodynamic and electron -microscopic data. Biopolymers. 33, 561 (1993).
    29 Zadik, P. M., Chapman, P. A. and Siddons, C. A. Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. Journal of Medical Microbiology. 39, 155 (1993).
    30 Chiang, S. K., Lou, Y. C. and Chen, C. P. NMR solution structure of KP-TerB, a tellurite-resistance protein from Klebsiella pneumoniae. Protein Science. 17, 785 (2008).
    31 Kopeck, M., and FLEET., G. H. Demonstration of a fibrillar component in the cell wall in the yeast Saccharomyces cerevisiae and its chemical nature. Journal of Cell Biology. 62, 11 (1974).
    32 Hahn, E., Exploring the 3D molecular architecture of Escherichia coli type 1 pili. Journal of Molecular Biology. 323, 845 (2002).
    33 Reguera, G. Extracellular electron transfer via microbial nanowires. Nature. 435, 1098 (2005).
    34 Goldberg-Oppenheimer, P. and Regev, O. Exploring a nanotube dispersion mechanism with gold-labeled proteins via Cryo-TEM imaging. Small. 3, 1894 (2007).
    35 Jensen, M. O. A new method for fixation of unmineralized haptophytes for TEM (whole mount) investigations. Journal of Phycology. 34, 558 (1998).
    36 Jongebloed, W. L., Stokroos, I., Van der Want, J. J. L. and Kalicharan, D. Non-coating fixation techniques or redundancy of conductive coating, low kV FE-SEM operation and combined SEM/TEM of biological tissues. Journal of Microscopy-Oxford. 193, 158 (1999).
    37 Kalicharan, D., Jongebloed, W. L., Rawson, D. M. and Zhang, T. T. Variations in fixation techniques for field emission SEM and TEM of zebrafish (Branchydanio rerio) embryo inner and outer membranes. Journal of Electron Microscopy. 47, 645 (1998).
    38 Harreveld, V. A. and Khattab, F. I. Perfusion fixation with glutaraldehyde and post-fixation with osmium tetroxide for electron microscopy. Journal Cell Science. 3, 579 (1968).
    39 Squarzoni, S., Cinti, C., Santi, S., Valmori, A. and Maraldi, N. M. Preparation of chromosome spreads for electron (TEM, SEM, STEM), light and confocal microscopy. Chromosoma. 103, 381 (1994).
    40 Jarett, L. From embedding to insulin action a citation-classic commentary on embedding in expoxy-resins for ultrathin sectioning in electron microscopyby Richarson, K.C., JARETT, L. AND Finke, E. H. Current Contents. 8-8 (1991).
    41 Luft, J. H. citation-classic improvments in expoxy-resins embedding methods. Current Contents. 8-8 (1977).
    42 VanMeerbeek, B., Eick, J. D. and Robinson, S. J. Epoxy-embedded versus nonembedded TEM examination of the resin-dentin interface. Journal of Biomedical Materials Research. 35, 191 (1997).
    43 Matias, V. R. F., Al-Amoudi, A., Dubochet, J. and Beveridge, T. J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology. 185, 6112 (2003).
    44 Beveridge, T. J. Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology. 181, 4725 (1999).
    45 Yasuko KANEKO, K. N. a. K. N. Observation of in vivo DNA in ice embedded whole cyanobacterial cells by hilbert differential contrast transmission electron microscopy (HDC-TEM). Plasma and Fusion Research. 2, 4 (2007).
    46 He, Y., Tang, X. and Sun, M. An improved method for the preservation and location of single cells during the embedding procedure for transmission electron microscopy. South African Journal of Botany. 72, 298 (2006).
    47 Harris, J. R. Negative staining and cryoelectron microscopy: the thin film techniques microscopy: the thin film techniques. BIOS Scientific Publishers, Oxford, United Kingdom. (1997).
    48 Fujikawa, S. and Miura, K. Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit bodies of basidiomycetes. Cryobiology. 23, 371 (1986).
    49 Dykstra, M. J. Biological electron microscopy : theory, techniques, and troubleshooting. New York : Plenum Press (1992).
    50 Fujiyoshi, Y. a. N. M. specimen-holding device for electron microscope. U.S. Patent No. 5,406,087 (1994).
    51 Spence, J. High-resolution electron microscopy. Oxford University Press, (2003).
    52 P. Buseck, J. C., L. Eyring High-resolution transmisson electron microscopy and associated techniques. Oxford University Press, (1988).
    53 Farztdinov, V. M. Spectral dependence of femtosecond relaxation and coherent phonon excitation in C60 films. Physical Review B. 56, 4176 (1997).
    54 Cho, G. C., Kütt, W. and Kurz, H. Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Physical Review Letters. 65, 764 (1990).
    55 Vitali, L., Schneider, M. A., Kern, K., Wirtz, L. and Rubio, A. Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite. Physical Review B. 69, 121414 (2004).
    56 Egerton, R. F. and Whelan, M. J. Electron energy loss spectrum and band structure of diamond. Philosophical Magazine. 30, 739 (1974).
    57 Gignac, W. J., Williams, R. S. and Kowalczyk, S. P. Valence- and conduction-band structure of the sapphire (11-bar02) surface. Physical Review B. 32, 1237 (1985).
    58 Scheibner, E. J. and Tharp, L. N. Inelastic scattering of low energy electrons from surfaces. Surface Science. 8, 247 (1967).
    59 Rose-Petruck, C., Schafer, K. J., Wilson, K. R. and Barty, C. P. J. Ultrafast electron dynamics and inner-shell ionization in laser driven clusters. Physical Review A. 55, 1182 (1997).
    60 Hitchcock, A. P. and Mancini, D. C. Bibliography and database of inner shell excitation spectra of gas phase atoms and molecules. Journal of Electron Spectroscopy and Related Phenomena. 67, vii-vii (1994).
    61 Reimer, L. Transmission electron microscopy (Springer, Heidelberg, Germany). (1984).
    62 Han, G., Khan, M., Fang, Y. and Cerrina, F. 2666-2671 (AVS).
    63 Spence, J. C. H. High-resolution electron microscopy (Oxford Univ Press. (2003).
    64 Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope. (1996).
    65 Malis, T., Cheng, S. C. and Egerton, R. F. EELS log-ratio technique for specimen thickness measurement in the the TEM. Journal of Electron Microscopy Technique. 8, 193 (1988).
    66 Plitzko, J. M. and Mayer, J. Quantitative thin film analysis by energy filtering transmission electron microscopy. Ultramicroscopy. 78, 207 (1999).
    67 Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. and Furuya, K. Thickness measurements with electron energy loss spectroscopy. Microscopy Research and Technique. 71, 626 (2008).
    68 Kimoto, K.. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature. 450, 702 (2007).
    69 Judy, J. W. Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures. 10, 1115 (2001).
    70 Liu, K. L., Wu, C. C., Huang, Y. J., Peng,H. L. Chang, H. Y. and Chang, P., Hsu, L., and Yew, T. R. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on a Chip. 8, 1915 (2008).
    71 Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K. and Sugiyama, S. Anisotropic etching of silicon in TMAH solutions. Sensors and Actuators A: Physical. 34, 51 (1992).
    72 Williams, K. R., Gupta, K. and Wasilik, M. Etch rates for micromachining processing - Part II. Journal of Microelectromechanical Systems. 12, 761 (2003).
    73 Williams, K. R. and Muller, R. S. Etch rates for micromachining processing. Journal of Microelectromechanical Systems. 5, 256 (1996).
    74 Gelder, W. v. and Hauser, V. E. The Etching of Silicon Nitride in Phosphoric Acid with Silicon Dioxide as a Mask. Journal of the Electrochemical Society. 114, 869 (1967).
    75 Gleine, W. and Muller, J. Low-pressure chemical vapor depostion on siliconoxynitride films for integrated optics. Applied Optics. 31, 2036 (1992).
    76 Zhang, S. L., Wang, J. T., Kaplan, W. and Östling, M. Silicon nitride films deposited from SiH2Cl2---NH3 by low pressure chemical vapor deposition: kinetics, thermodynamics, composition and structure. Thin Solid Films. 213, 182 (1992).
    77 Thywissen, J. H. Metastable-atom-activated growth of an ultrathin carbonaceous resist for reactive ion etching of SiO2 and Si3N4. Journal of Vacuum Science and Technology B. 16, 1155 (1998).
    78 Kastenmeier, B. E. E., Matsuo, P. J., Beulens, J. J. and Oehrlein, G. S. Chemical dry etching of silicon nitride and silicon dioxide using CF4/O-2/N-2 gas mixtures. Journal of Vacuum Science and Technology a-Vacuum Surfaces and Films. 14, 2802 (1996).
    79 Baek, H. C. and Lim, G. N. Method for manufacturing a cylindrical charge storage electrode of a semiconductor device. KR2001004383-A; KR300867-B (2001).
    80 Tripathi, N. K., Shrivastva, A., Biswal, K. C. and Rao, P. V. L. METHODS: Optimization of culture medium for production of recombinant dengue protein in Escherichia coli. Industrial Biotechnology. 5, 179 (2009).
    81 Kanamori, T., Kanou, N., Atomi, H. and Imanaka, T. Enzymatic Characterization of a Prokaryotic Urea Carboxylase. Journal of Bacteriology. 186, 2532 (2004).
    82 Scott, J. H. and Schekman, R. Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. Journal of Bacteriology. 142, 414 (1980).
    83 Ray, R. B., Steele, R., Meyer, K. and Ray, R. Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity. Gene. 208, 331 (1998).
    84 Lin, J. K. and Chou, C. K. In Vitro Apoptosis in the human hepatoma cell line induced by transforming growth factor β1. Cancer Research. 52, 385 (1992).
    85 Jo, M. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nature Medicine. 6, 564 (2000).
    86 Moreno, Y. Viability assessment of lactic acid bacteria in commercial dairy products stored at 4 degrees C using LIVE/DEAD (R) BacLight(TM) staining and conventional plate counts. International Journal of Food Science and Technology. 41, 275 (2006).
    87 Chen, C. Y. and Seguin-Swartz, G. A rapid method for assessing the viability of fungal spores. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie. 24, 230 (2002).
    88 Armstrong, D. W. and He, L. Determination of Cell Viability in Single or Mixed Samples Using Capillary Electrophoresis Laser-Induced Fluorescence Microfluidic Systems. Analytical Chemistry. 73, 4551 (2001).
    89 Ericsson, M., Hanstorp, D., Hagberg, P., Enger, J. and Nystrom, T. Sorting Out Bacterial Viability with Optical Tweezers. Journal of Bacteriology. 182, 5551 (2000).
    90 Jones, K. and Senft, J. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. Journal of Histochemical Society. 33, 77 (1985).
    91 Bank, H. L. Rapid assessment of islet viability with acridine-orange and propidium iodide. In Vitro Cellular and Developmental Biology. 24, 266 (1988).
    92 Napolitano, A. P., Chai, P., Dean, D. M. and Morgan, J. R. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Engineering 13, 2087 (2007).
    93 Bao, S. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444, 756 (2006).
    94 Yap, F. L. and Zhang, Y. Assembly of polystyrene microspheres and its application in cell micropatterning. Biomaterials. 28, 2328 (2007).
    95 Neyfakh, A. A. Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Experimental Cell Research. 174, 168 (1988).
    96 Takami, T. Schwann cell but not olfactory ensheathing glia transplants Improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. Journal Neuroscience. 22, 6670 (2002).
    97 Cesarone, C. F., Bolognesi, C. and Santi, L. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Analytical Biochemistry. 100, 188 (1979).
    98 Abbott, N., Hughes, C., Revest, P. and Greenwood, J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. Journal of Cell Science. 103, 23-37 (1992).
    99 Andrianarivo, A. G., Robinson, J. A., Mann, K. G. and Tracy, R. P. Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 cells. Journal of Cellular Physiology. 153, 256 (1992).
    100 Touhami, A., Jericho, M. H. and Beveridge, T. J. Atomic force microscopy of cell growth and division in staphylococcus aureus. Journal Bacteriology. 186, 3286 (2004).
    101 Hahn, E. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. Journal of Molecular Biology. 323, 845 (2002).
    102 Daniel-Hoffmann, M., Albeck, M., Sredni, B. and Nitzan, Y. A potential antimicrobial treatment against ESBL-producing Klebsiella pneumoniae using the tellurium compound AS101. Archives of Microbiology. 191, 631 (2009).
    103 Taylor, D. E. Bacterial tellurite resistance. Trends in Microbiology. 7, 111-115 (1999).
    104 Taylor, D. E. and Summers, A. O. Association of tellurium resistance and bacteriophage inhibition conferred by R plasmids. Journal of Bacteriology. 137, 1430 (1979).
    105 Reimer, L., Fromm, I. and Rennekamp, R. Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy. 24, 339 (1988).
    106 Lambin, P., Vigneron, J. P. and Lucas, A. A. Electron-energy-loss spectroscopy of multilayered materials: Theoretical aspects and study of interface optical phonons in semiconductor superlattices. Physical Review B. 32, 8203 (1985).
    107 Yu, K. and Eisenberg, A. Bilayer Morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules. 31, 3509 (1998).
    108 Sprung, M. M., Guenther, F. O. and Gladstone, M. T. Cured polyvinyl formal Sheet-thermal properties. Industrial and Engineering Chemistry. 47, 305 (1955).
    109 Paul, B. K. and Klimkiewicz, M. Application of an environmental scanning electron microscope to micromechanical fabrication. Scanning. 18, 490 (1996).
    110 Timo K. Korhonen, E. T., Helena Ranta, and Kielo Haahtela. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots. Journal of Bacteriology. 155, 6 (1983).
    111 Old, D. C., Tavendale, A. and Senior, B. W. A comparative-study of the type-3 fimbriae of Klebsiella species. Journal of Medical Microbiology. 20, 203 (1985).
    112 Sousa, A., Aitouchen, A. and Libera, M. Water mapping in hydrated soft materials. Ultramicroscopy. 106, 130 (2006).
    113 Grogan, D. W. and Cronan, J. E. Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews. 61, 429 (1997).
    114 Walkercaprioglio, H. M., Casey, W. M. and Parks, L. W. Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Applied and Environmental Microbiology. 56, 2853 (1990).
    115 Matias, V. R. F., Al-Amoudi, A., Dubochet, J. and Beveridge, T. J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology. 185, 6112 (2003).
    116 Kazunobu Amako, and Akemi, T. Fine Structures of the Capsules of Klebsiella pneumoniae and Escherichia coli Ki. Journal of Bacteriology. 170, 3 (1988).
    117 Zlotnik, H., Fernandez, M. P., Bowers, B. and Cabib, E. Saccharomyces cerevisiae mannoproteins from an external cell-wall layer that determines wall porrosity. Journal of Bacteriology. 159, 1018 (1984).
    118 Denobel, J. G., Klis, F. M., Priem, J., Munnik, T. and Vandenende, H. The glucanase-soluble mannoproteins limit cell-wall porosity in Saccharomyces cerevisiae. Yeast. 6, 491 (1990).
    119 Cortes, G., de Astorza, B., Benedi, V. J. and Alberti, S. Role of the htrA Gene in Klebsiella pneumoniae Virulence. Infection and Immunity. 70, 4772 (2002).
    120 Chen, C., Wanduragala, S., Becker, D. F. and Dickman, M. B. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels. Appled and Environmental Microbiology. 72, (2006).
    121 Sorqvist, S. Heat Resistance in Liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Veterinaria Scandinavica 44, 1 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE