簡易檢索 / 詳目顯示

研究生: 程翊峰
Cheng, I Feng
論文名稱: 應用正向反射式顯微光彈儀於雷射鑽孔後玻璃試片殘留應力之研究
INVESTIGATION OF RESIDUAL STRESS OF GLASS PLATES AFTER LASER DRILLING BY USING NORMAL INCIDENCE REFLECTIVE MICROPOLARISCOPE
指導教授: 王偉中
Wang, Wei Chung
口試委員: 蔣長榮
Chiang, Chun Ron
陳政寰
Chen, Cheng Huan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 玻璃穿孔正向反射式顯微光彈儀六步相位移法薄膜分光鏡雷射鑽孔玻璃工件殘留應力
外文關鍵詞: Through-glass via, Normal incidence reflective micropolariscope, Six-step phase shifting technique, Pellicle beam splitter, Laser drilling, Glass plates, Residual stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 玻璃穿孔(Through-Glass Via)技術是利用雷射在玻璃工件上鑽孔,而玻璃工件經過雷射鑽孔後會於孔邊形成殘留應力。若雷射加工參數調整不當會使孔邊殘餘應力過大而產生裂紋,因此有必要檢測雷射在玻璃工件上鑽孔後孔邊之殘留應力以選擇較佳之雷射加工參數。本研究首次嘗試開發正向反射式顯微光彈儀以量測雷射在玻璃工件上鑽孔後孔邊之殘留應力。
    正向反射式顯微光彈儀可以量測非透明材料之殘留應力,然而由於架設上薄膜分光鏡之需要,因此必須考慮到薄膜分光鏡對於偏振光之偏振角度改變之影響。此外本研究發現於顯微系統中轉動檢偏鏡會使得影像旋轉而產生誤差,故本研究提出只需轉動起偏鏡及四分之一波片之六步相位移法,且以實驗求得修正之起偏鏡偏振軸角度代入六步相位移法中以修正薄膜分光鏡對偏振光之影響。本研究亦以模擬方式探討六步相位移法與四步相位移法在正向反射式顯微光彈儀中因為薄膜分光鏡而造成之量測誤差。
    藉由量測四分之一波片之相位延遲量並計算出近似之相位延遲量可驗證本研究所架設之正向反射式顯微光彈儀之量測準確性,而本研究藉由實驗量測應為零相位延遲量之反射鏡,並搭配模擬量測相位延遲量為0.050 rad與1.558 rad之試片,可得知在量測較低相位延遲量之物件時,薄膜分光鏡造成偏振光偏振角度改變對六步相位移法的結果影響甚大,為了提高量測準確性,必須使用修正之起偏鏡偏振軸角度代入六步相位移法。而利用模擬可以證明六步相位移法受到薄膜分光鏡之影響較四步相位移法小,較適用於正向反射式光彈儀。本研究亦量測不同雷射掃描線距及不同預熱溫度之鑽孔後玻璃試片孔邊之殘留應力,比較後可求得較佳之雷射加工參數。


    By through-glass via technique, thermal residual stress will be produced around the drilled hole on glass plates after laser drilling. The glass plate may be cracked due to the large residual stress if the laser manufacturing parameters are not appropriately chosen. Therefore, it is necessary to examine the residual stress of the glass plates after laser drilling. In this thesis, a normal incidence reflective micropolariscope was first built up to measure the residual stress of glass plates after laser drilling.
    A normal incidence reflective micropolariscope can be used to measure the residual stress of opaque specimens. However, the variation of the polarization angle of the polarized light caused by the pellicle beam splitter in the system should be considered. Besides, in the microscopic system the captured images may rotate due to the rotation of the analyzer. Therefore, in this thesis the six-step phase shifting technique (PST) which only the polarizer and the quarter-wave plate are rotated was proposed. The calibrated polarization angles of the polarizer were substituted into the six-step PST to eliminate the error caused by the pellicle beam splitter. Moreover, the error caused by pellicle beam splitter using six-step PST and using four-step PST were investigated by simulation.
    The accuracy of the micropolariscope was proved by obtaining the approximate phase retardation of the measured quarter-wave plate. Besides, by simulation of measuring specimens with phase retardation of 0.050 rad and 1.558 rad and by measuring the reflection mirror being similar to the zero phase retardation specimen, it was found that the pellicle beam splitter caused significant error when measuring the low phase retardation specimen. Therefore, it is necessary to substitute the calibrated polarization angles of the polarizer into the six-step PST to increase accuracy. Furthermore, because it is less sensitive to the pellicle beam splitter, simulation results showed that six-step PST is more suitable for the normal incidence reflective micropolariscope than four-step PST. Last but not the least, the residual stress of drilled glass plates with different laser scanning fill spacings and different preheating temperatures were measured to determine better laser manufacturing parameters.

    一、 簡介 1 二、 文獻回顧 3 三、 實驗原理 6 3.1 光彈法[22] 6 3.1.1 穿透式光彈法 8 3.1.2 反射式光彈法 9 3.2 相位移光彈理論[23] 10 3.2.1 瓊斯微積分[25] 11 3.2.2 六步相位移法 14 3.3 對應正向反射式光彈法之相位移法 18 3.3.1 薄膜分光鏡之分光原理 18 3.3.2 薄膜分光鏡造成偏振光偏振角度改變對相位移法之影響 18 四、 實驗試片與裝置 20 4.1 實驗試片規劃 20 4.2 實驗裝置 21 五、 實驗量測與分析程序 24 5.1 實驗儀器校正 24 5.1.1 偏振片偏振軸角度之校正 24 5.1.2 波片快軸角度之校正 24 5.1.3 顯微系統光路校準 25 5.1.4 薄膜分光鏡造成偏振光偏振角度之影響與起偏鏡偏振軸角度之修正 26 5.2 實驗量測程序 27 5.3 雷射鑽孔玻璃試片製作程序 29 5.4 實驗分析程序 29 5.4.1 以四分之一波片驗證儀器準確性 29 5.4.2 以量測不同相位延遲量試片探討修正偏振角度之六步相位移法的準確性提升效果 30 5.4.3 以模擬探討不同相位移法受到薄膜分光鏡造成偏振光偏振角度改變之影響 31 5.4.4 量測經雷射鑽孔後玻璃試片中之殘留應力 34 六、 結果與討論 35 6.1 檢偏鏡旋轉對影像旋轉之影響 35 6.2 以正向反射式顯微光彈儀量測四分之一波片之相位延遲量 36 6.2.1 以修正偏振角度之六步相位移法量測四分之一波片之實驗結果 36 6.2.2 未修正偏振角度之六步相位移法量測四分之一波片之結果 36 6.2.3 以模擬比較有無修正起偏鏡偏振軸角度代入相位移法量測四分之一波片之差異 37 6.3 以正向反射式顯微光彈儀量測反射鏡之相位延遲量 38 6.3.1 以修正偏振角度之六步相位移法量測反射鏡之實驗結果 38 6.3.2 未修正偏振角度之六步相位移法量測反射鏡之實驗結果 38 6.3.3 以模擬比較有無修正起偏鏡偏振軸角度代入六步相位移法量測反射鏡之差異 39 6.4 不同雷射加工參數鑽孔後玻璃試片之殘留應力量測結果 39 6.4.1 不同雷射掃描線距對於雷射鑽孔後玻璃試片殘留應力之比較 39 6.4.2 熱處理對於雷射鑽孔後玻璃殘留應力之比較 41 七、 結論與未來展望 44 7.1 結論 44 7.2 未來展望 46 八、 參考文獻 48 附錄A:偏振光學元件之瓊斯矩陣推導 106 附錄B:六步相位移法光強方程式推導 110 附錄C:四步相位移法光強方程式推導 113

    [1] 薛丁仁、林志鴻,“未來領先技術導向-三維矽穿孔技術(3D TSV)”,奈米通訊,20期,No. 3,第28 – 31頁,2013。
    [2] K. L. Wlodarczyk, A. Brunton, P. Rumsby and D. P. Hand, “Picosecond Laser Cutting and Drilling of Thin Flex Glass,” Optics and Lasers in Engineering, Vol. 78, pp.67-74, 2016.
    [3] 吳駿逸、謝易辰,“應力瑕疵檢測技術在光電產業上的應用,”機械工業雜誌,351期6月號,第129 – 136頁,2012。
    [4] L. Brusberg, M. Queisser, C. Gentsch, H. Schröder and K. D. Lang, “Advances in CO2-Laser Drilling of Glass Substrates,” Physics Procedia, Vol. 39, pp. 548-555, 2012.
    [5] L. Brusberg, M. Queisser, M. Neitz, H. Schröder and K. D. Lang, “CO2-Laser Drilling of TGVs for Glass Interposer Applications,” Proceedings of Electronic Components and Technology Conference, Orlando, U. S. A., pp. 1759-1764, 2014.
    [6] K. L. Wlodarczyk, A. Brunton, P. Rumsby and D. P. Hand, “Picosecond Laser Cutting and Drilling of Thin Flex Glass,” Optics and Lasers in Engineering, Vol. 78, pp. 64-74, 2016.
    [7] H. Fessler, R. E. Marston and E. Ollerton, “A Micropolariscope for Automatic Stress Anaysis,” Journal of Strain Analysis, Vol. 22, pp. 25-35, 1987.
    [8] A. Pawlak and A. Galeski, “Measurements of Characteristic Parameters in Polymer Composites by Means of a Micropolariscope,” Optical Engineering, Vol. 34, pp. 3398-3404, 1995.
    [9] S. Ritter and G. Busse, “In-Situ Observation of the Stress Field of the Failure Process in Single Fibre Reinforced Polymers,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17, pp. 1201-1208, 1998.
    [10] A. K. Asundi and B. Zhao, “Full-Field Stress/Birefringence Analysis with a Polarizing Microscope,” Proceedings of the SPIE, Vol. 3897, pp. 253-259, 1999.
    [11] C. C. Montarou, T. K. Gaylord, B. L. Bachim, A. I. Dachevski and A. Agarwal, “Two-wave-plate Compensator Method for Full-field Retardation Measurements,” Applied Optics, Vol. 45, 2006.
    [12] F. W. Hecker and B. Morche, “Computer-Aided Measurement of Relative Retardations in Plane Photoelasticity,” Proceedings of the VIIIth International Conference on Experimental Stress Analysis, Amsterdam, The Netherlands, pp. 535-542, 1986.
    [13] E. A. Patterson and Z. F. Wang, “Towards Full Field Automated Photoelastic Analysis of Complex Components,” Strain, Vol. 27, No. 2, pp. 49-56, 1991.
    [14] A. Asundi, “Phase Shifting in Photoelasticity,” Experimental Techniques, Vol. 17, Issue 1, pp. 19-23, 1993.
    [15] G. M. Brown and J. L. Sullivan, “The Computer-Aided Holophotoelastic Method,” Experimental Mechanics, Vol. 30, Issue 2, pp. 135-144, 1990.
    [16] A.V. S. S. S. R. Sarma, S. A. Pillai, G. Subramanian and T. K. Varadan, “Computerized Image Processing for Whole-Field Determination of Isoclinics and Isochromatics,” Experimental Mechanics, Vol. 32, Issue 1, pp. 24-29, 1992.
    [17] C. Buckberry and D. Towers, New Approaches to the Fullfield Analysis of Photoelastic Stress Patterns. Optics and Lasers Engineering, Vol. 24, Issue 516, pp. 415-428, 1996.
    [18] G. Petrucci, “Full Field Automatic Evaluation of Isoclinic Parameter in White Light,” Experimental Mechanics, Vol. 37, Issue 4, pp.420-426, 1997.
    [19] A. D. Nurse, “Full-Field Automated Photoelasticity by Use of a Three-Wavelength Approach to Phase Stepping,” Applied Optics, Vol. 36, Issue 23, pp. 5781-5786, 1997.
    [20] 宋泊錡,“檢測材料應力與厚度創新光測力學方法之研究,”國立清華大學動力機械工程學系博士論文,2014。
    [21] 呂正雍,“反射式光彈法於玻璃基板應力量測之研究,”國立清華大學動力機械工程學系碩士論文,2015。
    [22] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” 3rd ed., McGraw-Hill, New York, U. S. A., 1991.
    [23] K. Ramesh, “Digital Photoelasticity: Advanced Techniques and Applications,” 1st ed., Springer, Berlin, Germany, 2000.
    [24] A. Asundi, T. Liu and C. G. Boay, “Phase-shifting Method with a Normal Polariscope,” Applied Optics, Vol. 38, pp. 5931-5935, 1999.
    [25] 張阜權、孫榮山、唐 偉國,“光學” ,凡異出版社,1995。
    [26] 葉玉堂、饒建珍、肖峻,“幾何光學” ,五南出版社,2008。
    [27] Website: http://www.globalspec.com/
    [28] M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Cambridge University Press, New York, U. S. A., 1999.
    [29] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,第六版,台北市,臺灣,中華民國,2009。
    [30] Website: http://www.itrc.narl.org.tw/
    [31] Website: http://www.corning.com/worldwide/en/products/display-glass/products/eagle-xg-slim.html
    [32] MATLAB Help Handbook, The MathWorks, Inc., U. S. A.
    [33] Website: https://www.thorlabs.com/
    [34] Website: https://www.thorlabs.de/newgrouppage9.cfm?
    objectgroup_id=854&pn=AQWP05M-600
    [35] Website: http://www.edmundoptics.com/
    [36] Website: http://www.ciscorp.co.jp/index_en.php
    [37] 沈明興,“應用多波長共焦干涉顯微系統於表面輪廓之研究,”國立清華大學動力機械工程學系博士論文,2015。
    [38] 許永茂,“應用半級光彈法於機械式結合複合材料接頭之設計”,國立清華大學動力機械工程學系碩士論文,1988。
    [39] Website: http://www.coherent.com/
    [40] L. Gallais, P. Cormont and J. L. Rullier, “Investigation of Stress Induced by CO2 laser Processing of Fused Silica Optics for Laser Damage Growth Mitigation,” Optics Express, Vol.17, pp. 23488-23501, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE