研究生: |
夏文茵 Wen-Yin Hsia |
---|---|
論文名稱: |
一維推廣Ambrosetti-Brezis-Cerami問題解集合的結構 The Structure of the Solution Set of a Generalized Ambrosetti-Brezis-Cerami Problem in One Space Variable |
指導教授: |
王信華博士
Shin-Hwa Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2003 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 解集合 、多重 、正解 、分支 、凹凸非線性 、時間圖 |
外文關鍵詞: | solution set, exact multiplicity, positive solution, bifurcation, concave-convex nonlinearity, time map |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們探討非線性兩點邊界值問題的解集合的結構,當滿足一些條件的時候.在(A1)-(A4)的條件之下,我們可以證明存在某一個正數使得這個問題當介在0跟正數之間會有兩個正解,當等於正數之時只有一個正解,當大於正數之時會沒有正解.
[1]I. Addou, A. Benmezai, S. M. Bouguima and M. Derhab, Exactness results for generalized Ambrosetti-Brezis-Cerami problem and related one-dimensional elliptic equations, Electron. J. Diff. Eqns.(2000), 1-34.
[2]A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal.{122} (1994), 519-543.
[3]M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal.{52} (1973), 161--180.
[4]B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.{68} (1979), 209-243.
[5]P. Korman, On uniqueness of positive solutions for a class of semilinear equations,Discrete Contin. Dyn. Syst.8 (2002), 865--871.
[6]P. Korman and J. Shi, Instability and exact multiplicity of solutions of semilinear equations, Electron. J. Diff. Eqns. Conf., 5 (2000), 311--322.
[7]T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J.{20} (1970), 1-13.
[8]J. Sanchez and P. Ubilla, One-dimensional elliptic equation with concave and convex nonlinearities, Electron. J. Diff. Eqns.{2000} (2000), 1-9.
[9]J. Shi, private communications.
[10]M. Tang, Exact multiplicity for semilinear Dirichlet problem involving concave and convex nonlinearities, Proc. Royal Soc. Edinburgh, Sect. A., {133} (2003), 705--717.
[11]S.-H. Wang and T.-S. Yeh, On the exact structure of positive solutions of an Ambrosetti-Brezis-Cerami problem and its generalization in one space variable, {Differential Integral Equations, }in press.
[12]S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a p-Laplacian dirichlet problem and their applications, J. Math. Anal. Appl.,in press.
[13]S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, to appear in J. Math. Anal. Appl. (under minor revisions).