研究生: |
匡載文 Kwang, Zai-wen |
---|---|
論文名稱: |
溶劑調控多孔碘化鉛薄膜與甲基碘化胺之反應以提升鈣鈦礦太陽能電池效率 Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performance of perovskite solar cell |
指導教授: |
呂世源
LU, SHIH-YUAN |
口試委員: |
段興宇
TUAN, HSING-YU 蔡德豪 TSAI, DE-HAO |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、碘化鉛前驅物 、二甲基亞碸配位 、晶體成長 |
外文關鍵詞: | Perovskite solar cells, Lead iodide precursors, DMSO coordination, Crystal growth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
改善鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC)中鈣鈦礦層的形貌與品質,有助於提升電池的光電轉換效率(Power Conversion Efficiency, PCE),而兩步驟沉積法是廣泛用於製備高效能鈣鈦礦電池的製程方式。在兩步驟沉積法製備鈣鈦礦薄膜中,先於第一階段沉積碘化鉛(PbI2)薄膜,再於第二階段引入甲基碘化胺(MethylAmmonium Iodide, MAI)與PbI2反應生成鈣鈦礦MAPbI3薄膜。在第一階段所沉積的PbI2薄膜形貌與組成,是影響第二階段反應所形成的鈣鈦礦薄膜形貌與品質之關鍵。最近的研究指出將二甲基亞碸(DiMethylSulfOxide, DMSO)分子引入鈣鈦礦薄膜製程中,亦能改善鈣鈦礦薄膜的品質。本研究改變DMSO與PbI2之間的配位方式與DMSO的配位數量,並藉由退火過程調控兩步驟法中PbI2的形貌,形成具有部分DMSO殘留的多孔PbI2-DMSO薄膜,此特殊組成與形貌顯著地影響PbI2與MAI之間的反應,形成高品質的鈣鈦礦(PeroVSKite, PVSK)薄膜。
本研究藉由預配位法(pre-coordination)及原位配位法(in-situ coordination),改變DMSO配位方式形成PbI2(DMSO)與PbI2(DMSO)2薄膜,並在薄膜經過退火處理後,控制配位薄膜形貌與組成。在配位數量的比較中,發現配位數高的PbI2-DMSO薄膜,退火後會形成較大的孔洞與殘留較多的DMSO;配位方式不同的比較中,預配位法能形成大小適中的孔洞,以及適當含量的DMSO與PbI2(DMSO)x中間物,而原位配位法較不易控制薄膜的孔洞大小,且會殘留過多DMSO分子。此現象說明配位法與數量的控制,於退火過程影響了PbI2-DMSO晶體的成長,包含孔洞的形成與DMSO的殘留。透過MAI濃度最適化,製備以不同配位PbI2-DMSO薄膜為基底形成的鈣鈦礦薄膜,相較於原位配位法的PbI2-DMSO與未配位的PbI2,以預配位法形成的PbI2-DMSO,更能製備出緻密性高、粒子大小一致、光利用率高以及載子壽命較長的鈣鈦礦薄膜。藉由預配位法,可使平均PSC效率提升至14.02% (負向掃描效率最高為15.16%),與未配位PSC的10.85%以及原位配位法PSC的11.66%相比有顯著提升。證實本研究開發的溶劑調控形成多孔碘化鉛之技術,不僅能了解配位方式對於PbI2-DMSO與PVSK晶體生長的影響,將此技術應用於兩步驟沉積鈣鈦礦薄膜製程,有助於提升PSC之光電轉換效率。
Film morphology and quality of perovskite layer are critical to achieve high efficiencies for perovskite solar cells. Two-step sequential deposition method is widely used in the fabrication of high-performance perovskite solar cells. In two-step sequential deposition, the film morphology and composition of PbI2 are found to play a key role on the quality of the resulting CH3NH3PbI3 film obtained from the reaction between PbI2 and CH3NH3I. Recently, it was shown that introduction of dimethylsulfoxide (DMSO) molecule into the fabrication process of the perovskite layer can significantly improve the film quality.
In this work, we used two methods, pre-coordination and in-situ coordination, to form mesoporous PbI2-DMSO films containing proper amounts of DMSO solvent and PbI2-DMSO intermediate phase through solvent-modulated reactions. The coordination ability between Pb2+ and DMSO is adjusted with different coordination methods and subsequent annealing processes. PbI2(DMSO)2 films contain not only larger voids but also more DMSO solvent and PbI2(DMSO)x complex than PbI2(DMSO) films after the annealing. The films fabricated with the pre-coordination method contain suitable sizes of voids and proper amounts of DMSO solvent and PbI2(DMSO)x complex as compared to the films fabricated with the in-situ coordination method. It indicates that the growth of the PbI2-DMSO crystals is significantly influenced by the coordination method, annealing process, and coordination number.
Perovskite films are fabricated from different PbI2-DMSO films at different MAI concentrations. In general, better quality perovskite films are obtained with the pre-coordination method, possessing more compact and uniform structure with higher light-harvesting capability and longer carrier lifetime. The perovskite solar cells fabricated based on the PbI2 films from the pre-coordination method, exhibit higher average power conversion efficiencies (PCE) with the highest up to 14.02% (achieving the highest reverse scan efficiency of 15.16%), representing a significant enhancement of photovoltaic performance over those from the in-situ coordination method (11.66%) and the control (10.85%). This work not only reveals the mechanism differences between the pre-coordination and in-situ coordination methods for the PbI2-DMSO crystal growth, but also offers a new option to enhance the efficiency of perovskite solar cells.
1. Dar, M.I., N. Arora, P. Gao, S. Ahmad, M. Grätzel, and M.K. Nazeeruddin, Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors. Nano Lett., 2014. 14: p. 6991-6996.
2. Wang, X., J. Byrne, L. Kurdgelashvili, and A. Barnett, High efficiency photovoltaics: on the way to becoming a major electricity source. Wiley Interdiscip. Rev.: Energy Environ., 2012. 1: p. 132-151.
3. Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014. 6: p. 242-247.
4. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334: p. 629-634.
5. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012. 2: p. 591-598.
6. NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/ efficiency_chart.jpg (accessed April 19, 2016).
7. http://web.stanford.edu/group/gcep/cgi-bin/gcep-research/all/novel-inorganic-organic-perovskites-for-solution-processable-photovoltaics/.
8. Gheno, A., S. Vedraine, B. Ratier, and J. Bouclé, π-conjugated materials as the hole-transporting layer in perovskite solar cells. Metals, 2016. 6: p. 21.
9. Marchioro, A., J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, and J.-E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 2014. 8: p. 250-255.
10. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395-398.
11. Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3: p. 4088-4093.
12. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499: p. 316-319.
13. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater., 2014. 2: p. 081510.
14. Grätzel, M., The light and shade of perovskite solar cells. Nat. Mater., 2014. 13: p. 838-842.
15. Williams, S.T., F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, and A.K.-Y. Jen, Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS nano, 2014. 8: p. 10640-10654.
16. Li, Y., J.K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F.M. Toma, and I.D. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J Phys. Chem. Lett., 2015. 6: p. 493-499.
17. Lee, J.W., D.J. Seol, A.N. Cho, and N.G. Park, High‐efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater., 2014. 26: p. 4991-4998.
18. Wang, F., H. Yu, H. Xu, and N. Zhao, HPbI3: A new precursor compound for highly efficient solution‐processed perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 1120-1126.
19. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009. 131: p. 6050-6051.
20. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338: p. 643-647.
21. Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517: p. 476-480.
22. Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345: p. 542-546.
23. Yang, L., A.T. Barrows, D.G. Lidzey, and T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys., 2016. 79: p. 026501.
24. Wu, Z.W., S. Bai, J. Xiang, Z.C. Yuan, Y.G. Yang, W. Cui, X.Y. Gao, Z. Liu, Y.Z. Jin, and B.Q. Sun, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014. 6: p. 10505-10510.
25. Zhao, Y.X. and K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3Pbl3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C, 2014. 118: p. 9412-9418.
26. Yantara, N., F. Yanan, C. Shi, H.A. Dewi, P.P. Boix, S.G. Mhaisalkar, and N. Mathews, Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells. Chem. Mater., 2015. 27: p. 2309-2314.
27. Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 2013. 136: p. 622-625.
28. Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 2014. 24: p. 151-157.
29. Xiao, M., F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, and L. Spiccia, A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angew. Chem., 2014. 126: p. 10056-10061.
30. Xiao, Z., C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014. 7: p. 2619-2623.
31. Tan, K.W., D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. Acs Nano, 2014. 8: p. 4730-4739.
32. Hsu, H.-L., C.-P. Chen, J.-Y. Chang, Y.-Y. Yu, and Y.-K. Shen, Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014. 6: p. 10281-10288.
33. Xiao, Z., Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Adv. Mater., 2014. 26: p. 6503-6509.
34. Fu, Y., F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, and S. Jin, Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc., 2015. 137: p. 5810-5818.
35. Hao, F., C.C. Stoumpos, Z. Liu, R.P. Chang, and M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc., 2014. 136: p. 16411-16419.
36. Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 2014. 13: p. 897-903.
37. Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc., 2015. 137: p. 8696-8699.
38. Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci., 2014. 7: p. 2934-2938.
39. Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348: p. 1234-1237.
40. Li, W., J. Fan, J. Li, Y. Mai, and L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc., 2015. 137: p. 10399-10405.
41. Wassner, T.A., B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann, and M. Eickhoff, Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. J. Appl. Phys., 2009. 105: p. 023505.
42. Tang, Z., S. Tanaka, S. Ito, S. Ikeda, K. Taguchi, and T. Minemoto, Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy, 2016. 21: p. 51-61.
43. Yi, C., X. Li, J. Luo, S.M. Zakeeruddin, and M. Grätzel, Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater., 2016. 28: p. 2964–2970.
44. Vickerman, J.C. and I. Gilmore, Surface analysis: the principal techniques. 2011: John Wiley & Sons.
45. Miyamae, H., Y. Numahata, and M. Nagata, The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2(dmso)2. Chem. Lett., 1980. 9: p. 663-664.
46. Fu, W., J. Yan, Z. Zhang, T. Ye, Y. Liu, J. Wu, J. Yao, C.-Z. Li, H. Li, and H. Chen, Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Sol. Energy Mater. Sol. Cells, 2016. 155: p. 331-340.
47. Zhang, J., G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, and B. Xu, Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. J. Mater. Chem. A, 2017. 5: p. 4190-4198.
48. Jo, Y., K.S. Oh, M. Kim, K.H. Kim, H. Lee, C.W. Lee, and D.S. Kim, High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces., 2016. 3: p. 1500768.
49. Wharf, I., T. Gramstad, R. Makhija, and M. Onyszchuk, Synthesis and vibrational spectra of some lead (II) halide adducts with O-, S-, and N-donor atom ligands. Can. J. Chem., 1976. 54: p. 3430-3438.
50. Lee, Y.H., J. Luo, R. Humphry‐Baker, P. Gao, M. Grätzel, and M.K. Nazeeruddin, Unraveling the reasons for efficiency loss in perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 3925-3933.
51. Liu, F., Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W.K. Chan, and J. Wang, Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater., 2016. 6: p. 1502206.
52. Zhang, T., M. Yang, Y. Zhao, and K. Zhu, Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett., 2015. 15: p. 3959-3963.
53. Zhang, H., J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, and W.C. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar‐heterojunction solar cells. Adv. Energy Mater., 2015. 5: p. 1501354.
54. Correa‐Baena, J.P., M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, and A. Abate, Unbroken perovskite: interplay of morphology, electro‐optical properties, and ionic movement. Adv. Mater., 2016. 28: p. 5031-5037.
55. Zhang, X., J. Ye, L. Zhu, H. Zheng, G. Liu, X. Liu, B. Duan, X. Pan, and S. Dai, High-efficiency perovskite solar cells prepared by using a sandwich structure MAI–PbI2–MAI precursor film. Nanoscale, 2017. 9: p. 4691-4699.
56. deQuilettes, D.W., S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015. 348: p. 683-686.
57. Noel, N.K., A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS nano, 2014. 8: p. 9815-9821.
58. Zuo, L., S. Dong, N. De Marco, Y.-T. Hsieh, S.-H. Bae, P. Sun, and Y. Yang, Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J. Am. Chem. Soc., 2016. 138: p. 15710-15716.
59. Lee, J.-W., H.-S. Kim, and N.-G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res., 2016. 49: p. 311-319.
60. Dong, Q., Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015. 347: p. 967-970.
61. Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.-P.C. Baena, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv., 2016. 2: p. e1501170.
62. Li, F., C. Bao, W. Zhu, B. Lv, W. Tu, T. Yu, J. Yang, X. Zhou, Y. Wang, and X. Wang, Microstructure modulation of the CH3NH3PbI3 layer in perovskite solar cells by 2-propanol pre-wetting and annealing in a spray-assisted solution process. J. Mater. Chem. A, 2016. 4: p. 11372-11380.
63. Fang, X., Y. Wu, Y. Lu, Y. Sun, S. Zhang, J. Zhang, W. Zhang, N. Yuan, and J. Ding, Annealing-free perovskite films based on solvent engineering for efficient solar cells. J. Mater. Chem. C, 2017. 5: p. 842-847.
64. Chen, Q., H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014. 14: p. 4158-4163.
65. Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014. 9: p. 927-932.
66. Ko, H.-S., J.-W. Lee, and N.-G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A, 2015. 3: p. 8808-8815.
67. Hsieh, T.-Y., C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS Appl. Mater. Interfaces, 2017. 9: p. 8623-8633.
68. Li, G., K.L. Ching, J.Y. Ho, M. Wong, and H.S. Kwok, Identifying the optimum morphology in high‐performance perovskite solar cells. Adv. Energy Mater., 2015. 5: p. 1401775.
69. Kim, Y.C., N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho‐Baillie, S. Huang, M.A. Green, and J. Seidel, Beneficial effects of PbI2 incorporated in organo‐lead halide perovskite solar cells. Adv. Energy Mater., 2015. 6: p. 1502104.