簡易檢索 / 詳目顯示

研究生: 趙家崢
Chao, Chia-Cheng
論文名稱: 利用含矽化嵌段共聚物聚苯乙烯-聚二甲基矽氧烷製備奈米圖案
Nanopatterning from Silicon-containing PS-PDMS Block Copolymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 141
中文關鍵詞: 奈米圖案自組裝
外文關鍵詞: Nanopattern, Self-assembly
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nanopatterning, the fabrication of patterns with nanoscale features, has drawn great attention during the last decade. To create well-defined nanopatterns over large areas, a variety of patterning technologies (including top-down and bottom-up methods) have been developed. Nanopatterning based on bottom-up method has been considered as a candidate to substitute or improve top-down method so as to enable a variety of nanotechnologies. Among the bottom-up methods, self-assembled block copolymers (BCPs) driven by the immiscibility between the constituted blocks own inherently various nanostructures. For BCPs containing silicon atoms, the self-assembled nanostructures give rise to appealing applications in nanopatterning because of their capability to form inorganic oxide under oxygen plasma treatment. In this study, a series of silicon-containing BCPs, polystyrene-b- polydimethylsiloxane (PS-PDMS), has been synthesized for nanopatterning.
    We aim to use a one-step oxidation process in PDMS-rich PS-PDMS BCP thin films to simultaneously etch the minor PS component into thru-pore nanochannels and to convert the PDMS matrix into a robust inorganic film. Well-defined ultra-thin freestanding nanoporous films with hexagonally packed nanochannels can be identified by transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM). To further examine the chemical nature of the oxidized PS-PDMS thin-film, X-ray photoelectron spectroscopy (XPS) was carried out to investigate the conversion of PDMS block and the removal of PS block. From the XPS results, we suggest that the PS-PDMS thin film is oxidized to form SiOC after oxygen plasma treatment. By taking advantage of the robust property and high etching selectivity of the SiOC thin films under oxygen reactive ion etching (RIE), this nanoporous thin film can be used as an etch-resistant and reusable mask for the pattern transfer to various polymeric materials. Consequently, topographic nanopatterns of PS, PMMA and PC can be obtained.
    Considering the geometries of nanostructures for potential applications, the self-assembled diblock copolymer nanostructures typically include dots, layers and pillars but ring-shaped nanostructure is not common. One way to create the ring-shaped nanostructure is to employ the self-assembly of triblock terpolymers for the formation of core-shell cylinder thin film with low aspect-ratio cylinders perpendicular to the substrate so as to use it as a nanoring template. In contrast to the approach by using triblock terpolymers that requires a complete synthetic process, we aim to create SiOC nanoring arrays from PS-PDMS BCP. Perpendicular PDMS cylinders in the PS-rich PS-PDMS thin film can be obtained by solvent annealing. The PS-PDMS thin film was immersed into a selective solvent for the PDMS to create nanoporous arrays after surface reconstruction. Subsequently, the core-shell cylinder thin film with hexagonally packed can be obtained by CF4 RIE. These core-shell cylinder thin-film samples can be used as a template to fabricate SiOC nanoring arrays through oxygen plasma treatment. This method provides a convenience way to create silicon oxy carbide nanoring arrays from diblock copolymers.
    Among all of the nanostructures from the self-assembly of BCPs, gyroid is one of the most appealing nanostructured phase for practical applications because of the unique texture with a matrix and bi-continuous networks in three-dimensional space. To acquire the formation of gyroid phase, we aim to study the phase transition of solution-cast bulk samples of PS-rich PS-PDMS samples. Different selective solvents for PS with different evaporation rates were employed. For PS-PDMS samples with lamellae-forming stable phase, by controlling the solvent evaporation for solution-casting, cylinder and gyroid phases can be obtained. Conversely, the formation of metastable phase can be kinetically controlled through solution-casting by using solvents with different evaporation rates. For practical applications, we are interested in the formation of thin-film samples with bi-continuous networks. Similar to the results of phase transition behavior in bulk, thin films with bi-continuous networks can be formed through solution-casting. As a result, PS-PDMS thin-film samples can be used as a template to fabricate SiOC thin-film samples with bi-continuous networks through one-step oxidation. This approach suggests an easy way to create inorganic oxide thin films with bi-continuous networks that can provide large specific surface area for practical applications.


    Contents Abstract I Contents IV List of Tables VII Figure Captions VIII Chapter 1 Introduction 1 1.1 Nanopatterning from Top-down Methods 2 1.1.1 Electron Beam Lithography 2 1.1.2 Soft Lithography 3 1.1.3 Nanoimprint Lithography 5 1.1.4 Scanning Probe Lithography 7 1.2 Self-assembly of Molecules and Supramolecules 8 1.2.1 Nanoparticle Self-assembly 9 1.2.2 Surfactant Self-assembly 10 1.2.3 Block Copolymer (BCP) Self-assembly 10 1.3 BCP Self-assembly for Nanopatterning 12 1.3.1 Amphiphilic BCPs 12 1.3.2 Degradable BCPs 14 1.3.3 Organic-organometallic BCPs 18 1.3.4 Silicon-containing BCPs 20 1.4 BCP Lithography 25 1.4.1 Sphere-forming BCPs for Lithography 25 1.4.2 Cylinder-forming BCPs for Lithography 27 1.4.3 Lamella-forming BCPs for Lithography 29 1.5 Nanoring Arrays from BCP Self-assembly 31 1.5.1 Triblock Terpolymers 32 1.5.2 Diblock Copolymers 36 1.6 Gyroid Phase from BCP Self-assembly 41 1.6.1 Structures and Formation of Gyroid Phase 41 1.6.2 Phase Transformation of Gyroid Phase 46 1.6.3 Thin-film Samples with Gyroid Phase 51 Chapter 2 Objectives 56 Chapter 3 Experimental 59 3.1 Materials 59 3.2 Sample Preparation 62 3.2.1 Sample Preparation for PS-PDMS BCP Bulk Samples 62 3.2.2 Sample Preparation for Reusable Mask 63 3.2.3 Sample Preparation for Nanorings Arrays 64 3.2.4 Sample Preparation for PS-PDMS BCP Bulk Samples 65 3.2.5 Sample Preparation for Bi-continuous Networks Thin Films 65 3.3 Instruments 66 3.3.1 Thermogravimetric Analysis (TGA) 66 3.3.2 Differential Scanning Calorimetry (DSC) 66 3.3.3 Transmission Electron Microscopy (TEM) 66 3.3.4 Small-angle X-ray Scattering (SAXS) 67 3.3.5 Scanning Probe Microscopy (SPM) 67 3.3.6 Oxygen Plasma & Reactive Ion Etching (RIE) 68 3.3.7 Field-Emission Scanning Electron Microscopy (FESEM) 68 3.3.8 X-ray photoelectron spectroscopy (XPS) 68 Chapter 4 Results and Discussion 70 4.1 Self-assembly of PS-PDMS BCPs 70 4.1.1 Thermal Behavior of PS-PDMS BCPs 70 4.1.2 Lamella-forming of PS-PDMS BCPs in Bulk 73 4.1.3 Cylinder-forming of PS-PDMS BCPs in Bulk 76 4.2 Robust Mask from PS-PDMS BCP Thin Film 82 4.2.1 Topographic Pattern from PS-PDMS BCP Thin Films 82 4.2.2 XPS Analysis of Oxidized PS-PDMS BCP Thin Films 89 4.2.3 Pattern Transfer to Polymeric Materials 94 4.3 Nanoarrays from PS-PDMS BCP Self-assembly 97 4.3.1 Solvent Annealing of PS-PDMS BCP Thin Films 97 4.3.2 Surface Reconstruction of PS-PDMS BCP Thin Films 102 4.3.3 Nanoarrays from PS-PDMS BCP Thin Films 106 4.4 Bi-continuous Network from PS-PDMS BCPs 112 4.4.1 Phase Transformation Behavior in Bulk 112 4.4.2 Phase Behavior in Thin Film 121 4.4.3 Bi-continuous Networks Inorganic Oxide Thin Films 125 Chapter 5 Conclusions 127 Chapter 6 Future Work 129 References 131 Publications 141

    References

    1. Lehn, J. -M. Science 1985, 227, 849.
    2. Whiteside, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
    3. Lehn, J. -M. Supramolecular Chemistry. Concepts and Perspectives (VCH, Weinheim, 1995).
    4. Whiteside, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    5. Hatzakis, M. J. Electrochem. Soc. 1969, 116, 1033.
    6. Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
    7. Rai-Choudhury, P. Handbook of microlithography, micromachining, and microfabrication SPIE Optical Engineering Press, 1997.
    8. Duan, H.; Zhao, J.; Zhang, Y.; Xie, E.; Han, L. Nanotechnology, 2009, 20, 135306.
    9. Zhao, X. -M.; Xia, Y.; Whitesides, G. M. J. Mater. Chem. 1997, 7, 1069.
    10. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550.
    11. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
    12. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
    13. Chou, S. Y.; Krauss, P. R.; Renstrom, P. Science 1996, 272, 85.
    14. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Appl. Phys. Lett. 1995, 67, 3114.
    15. Li, H. -W.; Huck, W. T. S. Nano Lett. 2004, 4, 1633.
    16. Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Small 2006, 2, 1440.
    17. Choi, P.; Fu, P. F.; Guo, L. J. Adv. Funct. Mater. 2007, 17, 65.
    18. Schift, H. J. Vac. Sci. Technol. B 2008, 26, 458.
    19. Ringger, M.; Hidber, H. R.; Schlogel, R.; Oelhafen, P.; Guntherodt, H. J. Appl. Phys. Lett. 1985, 46, 832.
    20. Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Guntherodt, H. J. Appl. Phys. Lett. 1987, 51, 244.
    21. Abraham, D.; Mamin, H.; Ganz, E.; Clarke, J. IBM J. Res. Dev. 1986, 30, 492.
    22. Dagata, J. A.; Schneir, J. H.; Harary, H.; Evans, C. J.; Postek, M. T.; Bennett, J. Appl. Phys. Lett. 1990, 56, 2001.
    23. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661.
    24. Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 30.
    25. Tseng, A. A.; Notargiacomo, A.; Chen, T. P. J. Vac. Sci. Technol. B 2005, 23, 877.
    26. Giersig, M.; Mulvaney, P. Langmuir, 1993, 9, 3408.
    27. Brust, M.; Kiely, C. Colloids Surf. A, 2002, 202, 175.
    28. Kresge, C.; Leonowicz, M.; Roth, W.; Vartuli, C.; Beck, J. Nature 1992, 359, 710.
    29. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    30. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
    31. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    32. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    33. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    34. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
    35. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
    36. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
    37. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
    38. Spatz, J. P.; Roescher, A.; Moller, M. Adv. Mater. 1996, 8, 337.
    39. Lin, Y.; Boker, A.; He1, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Nature 2005, 434, 55.
    40. Boontongkong, Y.; Cohen, R. E. Macromolecules 2002, 35, 3647.
    41. Lin, Z.; Kim, D. H.; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
    42. Qiao, Y.; Wang, D.; Buriak, J. M. Nano Lett. 2007, 7, 464.
    43. Mansky, M.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
    44. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
    45. Du, P.; Li, M. Q.; Douki, K.; Li, X. F.; Garcia, C. R. W.; Jain, A.; Smilgies, D. M.; Fetters, L. J.; Gruner, S. M.; Wiesner, U.; Ober, C. K. Adv. Mater. 2004, 16, 953.
    46. Mao, H. M.; Hillmyer, M. A. Macromolecules 2005, 38, 4038.
    47. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S. Macromolecules 2007, 40, 3669.
    48. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787.
    49. Shin, K.; Leach, K. A.; Goldbach, J. T.; Kim, D. H.; Jho, J. Y.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Nano. Lett. 2002, 2, 933.
    50. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    51. Ho, R. -M.; Tseng, W. -H.; Fan, H. -W.; Chiang, Y. -W.; Lin, C. -C.; Ko, B. -T.; Huang, B. -H. Polymer 2005, 46, 9362.
    52. Massey, J. A.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc. 2001, 123, 3147.
    53. Cao, L.; Massey, J. A.; Winnik, M. A.; Manners, I.; Riethmuller, S.; Banhart, F.; Spatz, J. P.; Moller, M. Adv. Funct. Mater. 2003, 13, 271.
    54. Lammertink, R. G. H.; Hempenius, M. A.; van den Enk, J. E.; Chan, V. Z. -H.; Thomas, E. L.; Vancso, G. J. Adv. Mater. 2000, 12, 98.
    55. Eitouni, H. B.; Nalsara, N. P. J. Am. Chem. Soc. 2004, 126, 7446.
    56. Kulbaba, K; Manners, I. Macromol. Rapid Commun. 2001, 22, 711.
    57. Li, J. K.; Zou, S.; Rider, D. A.; Manners, I.; Walker, G. C. Adv. Mater. 2008, 20, 1989.
    58. Rider, D. A.; Liu, K.; Eloi, J. -C.; Vanderark, L.; Yang, L.; Wang, J. -Y.; Grozea, D; Lu, Z. -H.; Russell, T. P.; Manners, I. ACS Nano, 2008, 2, 263.
    59. Chen, I. -J.; Lindner, E. Langmuir 2007, 23, 3118.
    60. Morra, M.; Occhiello, E.; Marola, R.; Garbassi, F.; Humphrey, P.; Johnson, D. J. Colloid Interface Sci. 1990, 137, 11.
    61. Kim, J.; Chaudhury, M.; Owen, M. J. Colloid Interface Sci. 2000, 226, 231.
    62. Kim, J.; Chaudhury, M.; Owen, M.; Orbeck, T. J. Colloid Interface Sci. 2001, 244, 200.
    63. Eddington, D.; Pucchinelli, J.; Beebe, D. Sens. Actuators, B 2006, 114, 170.
    64. Ginn, B. T.; Steinbock, O. Langmuir 2003, 19, 8117.
    65. Chan, V. Z. H.; Thomas, E. L.; Lee, V. L.; Miller, R. D.; Avgeropoulos, A.; Hadjichristidis, N. US Patent, Publication No:WO/00/02090.
    66. Li, L.; Yokoyama, H. Angew. Chem. Int. Ed. 2006, 45, 6338.
    67. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939.
    68. Jung, Y. S.; Ross, C. A. Small 2009, 5, 1654.
    69. Chan, V. Z. -H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thmas, E. L. Science 1997, 286, 1716.
    70. Hirai, T.; Leolukman, M.; Liu, C. C.; Han, E.; Kim, Y. J.; Ishida, Y.; Hayakawa, T.; Kakimoto, M.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2009, 21, 4334.
    71. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    72. Spatz, J. P.; Herzog, T.; Mobmer, S.; Ziemann, P.; Moller, M. Adv. Mater. 1999, 11, 149.
    73. Li, R. R.; Dapkus, P. D.; Thompson, M. E.; Jeong, W. G.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Appl. Phys. Lett. 2000, 76, 1689.
    74. Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J. Adv. Mater. 2001, 13, 1174.
    75. Black, C. T.; Guarini, K. W.; Milkove, K. R.; Baker, S. M.; Russell, T. P.; Tuominen, M. T. Appl. Phys. Lett. 2001, 79, 409.
    76. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    77. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
    78. Jung, Y. S.; Ross, C. A. Nano. Lett. 2007, 7, 2046.
    79. S. O.; Solak, H. H.; Stoykovich, M. P.; de Pablo, J. J.; Nealey, P. F. Nature 2003, 424, 411.
    80. Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; de Pablo, J. J.; Nealey, P. F. Science 2005, 308, 1442.
    81. Miller, M. M.; Prinz, G. A.; Cheng, S. F.; Bounnak, S. Appl. Phys. Lett. 2002, 81, 2211.
    82. Watanabe, H.; Manabe, C.; Shigematsu, T.; Shinmizu, M. Appl. Phys. Lett. 2001, 78, 2928.
    83. Hill, M. T.; Dorren, H. J. S.; de Vries, T.; Leijtens ,X. J. M.; den Besten, J. H.; Smalbrugge, B.; Oei, Y. S.; Binsma, H.; Khoe, G. D.; Smit, M. K. Nature, 2004, 432, 206.
    84. Pauzauskie, P. J.; Sirbuly, D. J.; Yang, P. Phys. Rev. Lett. 2006, 96, 143903.
    85. Zhu, J. G.; Zheng, Y. F.; Prinz, G. A. J. Appl. Phys. 2000, 87, 6668.
    86. Castano, F. J.; Morecroft, D.; Jung, W.; Ross, C. A. S Phys. Rev. Lett. 2005, 95, 137201.
    87. Guo, S.; Rzayev, J.; Bilalis, T. S.; Zalusky, A. S.; Olayo-Valles, R.; Hillmyer, M. A. Chem. Mater. 2008, 18, 1719.
    88. Chuang, V. P.; Ross, C. A.; Bilalis, P.; Hadjichristidis, N. ACS Nano, 2008, 2, 2007.
    89. Chung, V. P.; Ross, C. A.; Gwyther, J.; Manners, I. Adv. Mater. 2009, 21, 3789.
    90. Jung, Y. S.; Jung, W.; Ross, C. A. Nano Lett. 2008, 8, 2975.
    91. Rider, D. A.; Cavicchi, K. A.; Vanderark, L.; Russell, T. P.; Manners, I. Macromolecules 2007, 40, 3790.
    92. Ryu, J. -H.; Park, S.; Kim, B.; Klaikherd, A.; Russell, T. P.; Thayumanavan, S. J. Am. Chem. Soc. 2009, 131, 9870.
    93. Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2009, 42, 7221.
    94. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
    95. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L., Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
    96. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    97. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    98. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    99. Schoen, A. H. NASA TN D-5541, 1970.
    100. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    101. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    102. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    103. Hajduk, D. A.; Ho, R. -M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    104. Matsen, M. W. Phys. Rev. Lett. 1998, 80, 4470.
    105. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    106. Park, H.; Jung, J.; Chang, T.; Matsunaga, K.; Jinnai, H. J. Am. Chem. Soc. 2009, 131, 46.
    107. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. Nano Lett. 2009, 9, 2807.
    108. Crossland, E. J. W.; Nedelcu, M.; Ducati, C.; Ludwigs, S.; Hillmyer, M. A.; Steiner, U.; Snaith, H. J. Nano Lett. 2009, 9, 2813.
    109. Park, H.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H. Macromolecules 2007, 40, 2063.
    110. Luo, C.; Huang, W.; Han, Y. Macromol. Rapid Commun. 2009, 30, 515.
    111. Podariu, I.; Chakrabarti, A. J. Chem. Phys. 2003, 118, 11249.
    112. Yin, Y.; Sun, P.; Jiang, R.; Li, B.; Chen, T.; Jin, Q.; Ding, D.; Shi, A. J. Chem. Phys. 2006, 124, 184708/1.
    113. Li, X.; Gao, J.; Xue, L.; Han, Y. Adv. Funct. Mater. 2010, 20, 259.
    114. Zilliox J. G.; Roovers J. E. L.; Bywaters S. Macromolecules 1975, 8, 573.
    115. Bellas, V.; Iatrou, H.; Hadjichristidis, N. Macromolecules 2000, 33, 6993.
    116. Son, J. G.; Bae, W. K.; Kang, H.; Nealey, P. F.; Char, K. ACS Nano, 2009, 3, 3927.
    117. Xu, T.; Stevens, J.; Villa, J. -A.; Goldbach, J. T.; Guarini, K. W.; Black, C. T.; Hawker C. J.; Russell, T. P. Adv. Funct.Mater. 2003, 13, 698.
    118. Park, S.; Kim, B.; Wang J. -Y.; Russell, T. P. Adv. Mater. 2008, 20, 681.
    119. Singh, D. K.; Krotkov, R. V.; Xiang, H.; Xu, T.; Russell, T. P.; Tuominen, M. T. Nanotechnology 2008, 19, 245305.
    120. Ross, C. A.; Castano, F. J.; Jung, W.; Ng, B. G.; Colin I. A.; Morecroft, D. J. Phys. D: Apply. Phys. 2008, 41, 113002.
    121. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    122. Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T. Macromolecules 2000, 33, 9561.
    123. Sen, T.; Sebastianelli, A.; Bruce, L. J. J. Am. Chem. Soc. 2006, 128, 7130.
    124. Mercier, L.; Pinnavaia, T. J. Adv. Mater. 1997, 9, 500.
    125. De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem. Rev. 2002, 102, 3615.
    126. Rosati, D.; Perrin, M.; Navard, P. Harabagiu, V. Pinteala, M.; Simionescu, B. C. Macromolecules 1998, 31, 4301.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE