研究生: |
黃俊豪 Huang, Jun-Hao |
---|---|
論文名稱: |
具共同切換式整流器前級無位置感測永磁同步馬達驅動壓縮機及風扇之空調系統 AN AIR-CONDITIONING SYSTEM WITH SENSORLESS PMSM DRIVEN COMPRESSOR AND FAN WITH COMMON SWITCH-MODE RECTIFIER FRONT-END |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
廖聰明
Liaw, Chang-Ming 劉添華 Liu, Tian-Hua 陳盛基 Chen, Seng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 195 |
中文關鍵詞: | 永磁同步馬達 、無位置感測控制 、空調機 、壓縮機 、散熱風扇 、切換式整流器 、高頻訊號注入 、延伸反電動勢 、混合方法 、數位訊號處理器 、功因矯正 |
外文關鍵詞: | Permanent-magnet synchronous motor, sensorless control, air-conditioner, compressor, cooling fan, switch-mode rectifier, high-frequency signal injection, sensorless extended back EMF, hybrid method, DSP, power factor correction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一以數位訊號處理器為主之冷凍空調系統,包含一無位置感測永磁同步馬達驅動壓縮機、一無位置感測永磁同步馬達驅動散熱風扇,及一共通切換式整流器前級,並採用電力電路模組化及共通數位控制器以達到系統緊湊性。此外,為比較評估無位置感測之驅動特性,亦建立以標準永磁同步馬達驅動系統驅動之壓縮機及散熱扇。
高頻訊號注入及延伸反電動勢估測之無位置感測法均用於所發展之永磁同步馬達驅動壓縮機,比較評估了解各自之優缺點,據以發展一結合此兩種無位置感測法優點之混合式無位置感測法,以獲得廣速度範圍驅控性能之提升。所提混合法在啟動及低速驅動時採用高頻訊號注入法,在達到所設定之轉速時,平順地切換至延伸反電動勢估測無位置感測法。
由於散熱風扇之驅動性能要求較不嚴苛,故採直接責任週期電壓脈波寬度調變控制。以弦波及方波驅動之風扇均施以標準及無位置感測控制,並比較評估其操控特性。所提之無位置感測控制機構僅應用偵測並濾波之馬達單相端電壓,再藉由適當之換相移位獲得改善之驅動特性。
最後建立一共通切換式整流器前級,以建立永磁馬達驅動系統具升壓及調節良好之直流鏈電壓,並比較評估傳統及無橋式升壓切換式整流器之操控特性。受限所採數位訊號處理器TMS320F28335之PWM通道數,所建切換式整流器前級PWM訊號之產生以外加類比電路為之。
This thesis develops a digital signal processor (DSP) based air-conditioning system, it consists of a sensorless permanent-magnet synchronous motor (PMSM) driven compressor, a sensorless PMSM driven cooling fan and a common switch mode rectifier (SMR) front end. The system compactness is achieved through power circuit modularization and common digital control environment. Besides, for making comparative driving performance evaluation, the standard PMSM drives for the compressor and the fan are also established.
In the developed PMSM driven compressor, both high-frequency signal injection (HFI) and the extended-EMF (EEMF) sensorless control methods are applied and evaluated to comprehend their distinct merits and weak points. Then accordingly, a hybrid sensorless control scheme combining these two methods is developed to yield improved driving performance within wide speed range. In the developed control scheme, while the motor is started and driven under lower speed using HFI method, it is changed smoothly and operated using EEMF method as the speed is increased to a preset value.
As to the PMSM driven cooling fan, the direct duty-ratio voltage-mode PWM scheme is adopted for the less stringent performance requirements. The standard and sensorless controls for sine-wave and square-wave PMSM drives are all studied and evaluated. In the proposed sensorless control schemes, only one-phase motor terminal voltage is sensed and properly signal processed. Better driving performance is further achieved via commutation advanced shift technique.
Finally, a common front-end switch-mode rectifier (SMR) is formed to establish the boostable and well-regulated DC-link voltage for the followed two PMSM drives. Both the standard and the newly evolved bridgeless boost type SMRs are comparatively assessed. Owing to the limitation of pulse width modulation (PWM) channel number of the DSP TMS320F28335, the analog PWM circuit is employed as an alternative for realizing the front-end SMR.
A. Permanent-Magnet Synchronous Motor Drive
Fundamentals of PMSMs
[1] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[2] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: Wiley John & Sons, Inc., 1997.
[3] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001.
[4] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: Wiley, John & Sons, Inc., 2002.
[5] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[6] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, 1999, vol. 2, pp. 840-845.
[7] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[8] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
Motor design
[9] D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permanence,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006.
[10] P. Sergeant and A. Van den Bossche, “Segmentation of magnets to reduce losses in permanent-magnet synchronous machines,” IEEE Trans. Magn., vol. 44, no.11, pp. 4409-4412, 2008.
[11] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[12] N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009.
[13] W. N. Fu and S. L. Ho, “A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive,” IEEE Trans. Magn., vol. 46, no. 1, pp. 127-134, 2010.
Equivalent circuit modeling and parameter estimation
[14] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[15] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[16] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
B. Switching and Dynamic Control
Current control
[17] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[18] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[19] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in Proc. IEE Elect. Power Appl., 2000, vol. 147, no. 6, pp. 503-512.
[20] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[21] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[22] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[23] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[24] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Direct torque control
[25] Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors-a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007.
[26] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010.
Adaptive speed control
[27] Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[28] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
Neuro and fuzzy speed controls
[29] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
[30] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
[31] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[32] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
Sliding-mode and nonlinear speed controls
[33] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308.
[34] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[35] C. Lascu, I. Boldea and F. Blaabjerg, “Very-low-speed variable-structure control of sensorless induction machine drives without signal injection,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 591-598, 2002.
[36] F.F.M. EI-Sousy, “Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive,” in Proc. IET. Elect. Power Appl. 2011, vol. 5, pp. 113-132.
C. Commutation Tuning Control
[37] Y. A.-R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 636-644, 2006.
[38] P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, 2007.
[39] O. Shinkawa, K. Tabata, A. Uetake, T. Shimoda S. Ogasawara and H. Akagi, “Wide speed operation of a sensorless brushless DC motor having an interior permanent magnet rotor,” in Proc. IEEE PCCON, 1993, pp. 364-370.
[40] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
[41] H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002.
[42] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051.
D. Torque Ripple Reduction
[43] J. Holtz and L. Springob, “Identification and compensation of torque ripple in high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 309-320, 1996.
[44] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electorn., vol. 20, no. 6, pp. 1423-1431, 2005.
[45] D. K. Kim, K. W. Lee and B. I. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1762-1768, 2006.
[46] K. Y. Nam, W. T. Lee, C. M. Lee and J. P. Hong, “Reducing torque ripple of brushless DC motor by varying input voltage,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1307-1310, 2006.
[47] K. Gulez, A. A. Adam and H. Pastaci, “Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 251-257, 2008.
[48] Y. A. R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
[49] J. Beerten, J. Verveckken and J. Driesen, “Predictive direct torque control for flux and torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404-412, 2010.
E. Vibration Suppression
[50] S. Hattori, M. Ishida and T. Hori, “Vibration suppression control method for PMSM utilizing repetitive control with auto-tuning function and Fourier transform,” in Proc. IEEE IECON, 2001, vol. 3, pp. 1673-1679.
[51] K. Kawai, T. Zanma and M. Ishida, “Simultaneous vibration suppression control of PMSM using repetitive control with Fourier series,” in Proc. IEEE ICIT, 2006, pp. 854-859.
[52] S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1335-1338, 2006.
[53] A. Shimada, T. Zanma, S. Doki and M. Ishida, “Current compensation signal in suppression control for frame vibration of PMSM by sensorless control,” in Proc. IEEE PCC, 2007, pp. 874-878.
[54] R. Islam and I. Husain, “Analytical model for predicting noise and vibration in permanent magnet synchronous motors,” in Proc. IEEE ECCE, 2009, pp. 3461-3468.
F. Field-Weakening Control
[55] S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 866-871, 1990.
[56] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[57] J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
[58] S. Eiji, “Permanent magnet synchronous motor drives for hybrid Electric vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 162-168, 2007.
[59] C. Mademlis, I. Kioskeridis and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 715-723, 2004.
[60] M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed operation via electronic winding-change method for AC motors,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 742-752, 2006.
[61] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
[62] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
G. AC/DC Switch-Mode Rectifiers
[63] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc. IEEE PEDS, 1996, vol. 2, pp. 637-643.
[64] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[65] B. Singh and S. Singh, “Single-phase power factor controller topologies for permanent magnet brushless DC motor drives,” IET Power Electron., vol. 3, no. 2, pp. 147-175, 2010.
[66] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[67] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
[68] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” in Proc. IET. Elect. Power Appl., 2007, vol. 1, no. 3, pp. 316-328.
[69] Y. Li and T. A. Takahashi, “A digitally controlled 4-kW single-phase bridgeless PFC circuit for air conditioner motor drive applications,” in Proc. IPEMC, 2006, pp. 1-5.
[70] Y. Jang, M. M. Jovanovic and D. L. Dillman, “Bridgeless PFC boost rectifier with optimized magnetic utilization,” in Proc. IEEE APEC, 2008, pp. 1017-1021.
[71] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[72] M. Mahdavi and H. Farzanehfard, “Zero-current-transition bridgeless PFC without extra voltage and current stress,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2540-2547, 2009.
[73] J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic noise reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol.55, no.3, pp. 1295-1309, 2008.
[74] E. X. Yang, Y. Jiang, G. Hua and F. C. Lee, “Isolated boost circuit for power factor correction,” in Proc. IEEE APEC, 1993, pp. 196-203.
[75] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch-mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
[76] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., 2011, to be published.
H. Position Sensorless Control
Based on the derived variable or identified parameters
[77] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[78] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
[79] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in Proc. IEEE Power Electron. and Appl., 2005, pp. 10.
[80] A. H. Wijenayake, J. M. Bailey, and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
[81] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
[82] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[83] Y. Inoue, Y. Kawaguchi, S. Morimoto and M. Sanada, “Performance improvement of sensorless IPMSM drives in low-speed region using online parameter identification,” in Proc. IEEE ECCE, 2009, pp. 1933-1938.
[84] S. J. Underwood and I. Husain, “Online parameter estimation and adaptive control of permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2435-2443, 2010.
Back-EMF methods
[85] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors - an overview and evaluation,” in Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688.
[86] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[87] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[88] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[89] B. Nahid-Mobarakeh, F. Meibody-Tabar and F. M. Sargos, “Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 485-494, 2007.
[90] O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, 2006.
[91] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo and K. Mohri, “Microcomputer control for sensorless brushless motor,” IEEE Trans. Ind. Appl., vol. IA-21, no. 3, pp. 595-601, 1985.
[92] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. TMAG, vol. 42, no. 10, pp. 3473-3475, 2006.
[93] K. W. Lee, D. K. Kim, B. T. Kim and B. Kwon, “A novel starting method of the surface permanent-magnet BLDC motors without position sensor for reciprocating compressor,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 85-92, 2008.
[94] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, 2010.
Observer based methods
[95] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[96] S. Chi, Z. Zhang and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, 2009.
[97] V. C. Ilioudis and N. I. Margaris, “Speed and position estimation technique for PMSM based on modified machine model” in Proc. OPTIM, 2010, pp. 407-415.
[98] M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
[99] J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[100] J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[101] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[102] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[103] J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
Intelligent methods
[104] J. Cao, B. Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE BOBIO, 2007, pp. 1900-1905.
[105] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
Methods based on rotor magnet saliency
[106] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
[107] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
[108] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[109] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[110] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
[111] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[112] J. M. Guerrero, M. Leetmaa, F Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[113] Y. Jeong, R. D. Lorenz, T. M. Jahns and Seung Ki Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[114] C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in high-frequency signal injection based sensorless PM motor drives,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
[115] N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM nachines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008.
[116] Z. Zedong, L. Yongdong, X. Xiao and M. Fadel, “Mechanical sensorless control of SPMSM based on HF signal injection and Kalman filter,” in Proc. IEEE ICEMS, 2008, pp. 1385-1390.
[117] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[118] S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp.777-788, 2008.
[119] A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1614-1620, 2008.
[120] L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line position error compensation method for sensorless IPM motor drives using high frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
[121] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[122] G. Foo, S. Sayeef and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010.
[123] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[124] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[125] R. Raute, C. Caruana, C. S. Staines, J. Cilia, M. Sumner and G. M. Asher, “Analysis and compensation of inverter nonlinearity effect on a sensorless PMSM drive at very low and zero speed operation,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4065-4074, 2010.
[126] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[127] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor” in Proc. IEEE PESC, 2008, pp. 4256-4262.
[128] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[129] J. Bocker and C. Kroger, “Control of permanent magnet synchronous motor with dual-mode position estimation,” European Conference on Power Electronics and Applications, 2005, pp. 1-10.
[130] N. Patel, T. O’Meara, J. Nagashima and R. Lorenz, “Encoderless IPM traction drive for EV/HEV’s,” in Proc. IEEE IAS, 2001 , vol. 3, pp. 1703-1707.
[131] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[132] G. Foo and M. F. Rahman, “Direct torque and flux controlled IPM synchronous motor drive using a hybrid signal injection and adaptive sliding mode observer,” in Proc. TENCON, 2009, pp. 1-7.
I. Others
[133] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
[134]“Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/ tms320f28335.
[135]“Mitsubishi semiconductor PS21265-P/AP datasheet,” http://mitsubishichip.com/
Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.
[136] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[137] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[138] H. Y. Huang, “A position sensorless permanent-magnet synchronous motor drive using signal injection,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2009.
[139] C. C. Li, “A common DSP-based permanent-magnent synchronous motor drive condensing unit,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2009.
[140] Y. H. Hsieh, “Position sensorless permanent-magnet synchronous motor drive with switch-mode rectifier front-end,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2010.
[141] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2008.