研究生: |
謝秉諺 Hsieh, Ping-Yen |
---|---|
論文名稱: |
以微波電漿低溫製備結晶矽薄膜應用於軟性電子元件 Syntheses of crystalline Si films using microwave plasma at low temperature and their applications on flexible electronics |
指導教授: |
戴念華
Tai, Nyan-Hwa 李紫原 Lee, Chi-Young |
口試委員: |
金重勳
Chin, Tsung-Shune 林諭男 Lin, I-Nan 何主亮 He, Ju-Liang 闕郁倫 Chueh, Yu-Lun |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 163 |
中文關鍵詞: | 結晶矽薄膜 、微波電漿輔助化學氣相沉積系統 、四氯化矽 、可撓式結晶矽薄膜電子元件 |
外文關鍵詞: | crystalline Si film, microwave plasma enhanced chemical vapor deposition, silicon tetrachloride, flexible crystalline Si film-based electronics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要發展一低溫直接生長結晶矽薄膜於高分子聚醯亞胺基板之製程,並將其應用於軟性電子元件。研究結果顯示,以微波電漿輔助化學氣相沉積系統搭配四氯化矽/氫氣為前驅物,可成功低溫(<185oC)生長本質結晶矽薄膜於高分子基板。此低溫生長之主要關鍵乃因四氯化矽/氫氣微波電漿中會所生成H和Cl自由基,此類強蝕刻性自由基會於結晶矽薄膜生長過程中發生優選蝕刻、自我清潔及化學退火效應,加上微波電漿具高密度電漿及離子轟擊效應所致。接著,為有效進行結晶矽薄膜之摻雜,本研究亦開發出一自偏壓濺射固態摻雜源製程於四氯化矽/氫氣微波電漿中。本研究亦導入金觸媒之氣–固–固機制於四氯化矽/氫氣微波電漿製程,搭配氫氣電漿乾蝕刻技術,而製備出具尖端奈米結構之結晶矽柱狀薄膜。
進一步,將上述三種結晶矽薄膜(包含本質結晶矽薄膜、摻雜結晶矽薄膜及結晶矽柱狀薄膜)製備成可撓式結晶矽薄膜電子元件。其研究結果顯示,當以100 nm本質結晶矽薄膜作為薄膜電晶體之通道層時,其元件電性表現之場效載子遷移率可高達106 cm2/Vs及電流開關比1.2 × 106。進一步將本質結晶矽薄膜與摻雜結晶矽薄膜堆疊成單接面型薄膜太陽能電池,其可得到最佳太陽能電池表現:開路電壓0.54 V、短路電流20.91 mA/cm2及光電轉換效率7.36%。如將氫電漿處理之硼摻雜結晶矽柱狀薄膜作為場發射顯示器之陰極,其可達到低起始電場5.88 V/μm及高電流密度1.39 mA/cm2@10 V/μm之優異場發射表現,且此元件之半衰期更可超過10小時。最後,本研究亦證實上述三種結晶矽薄膜電子元件皆具優異之可撓曲性。
以上結果表示,本研究所開發之低溫結晶矽薄膜生長技術可廣泛應用於各種可撓式電子元件,並達到低成本且高效能之目標。
The purpose of this dissertation was to explore the approach of directly preparing high-quality crystalline Si films at low temperatures on a polyimide substrate for use in flexible crystalline Si film-based electronics. For this reason, a low-temperature technique was developed to synthesis intrinsic crystalline Si film using microwave plasma enhanced chemical vapor deposition (MWPECVD) with H2-diluted silicon tetrachloride (SiCl4) mixture as the precursor at a temperature as low as 185oC. The growth mechanism of high crystallinity arises from the synergistic effects of preferential etching, self-cleaning and chemical annealing by the stronger etching species of H and Cl radicals in the high density plasma process accompanying with ion bombardment effect. To dope the crystalline Si film efficiently, the self-biased sputtering solid doping source (SSSDS) process integrated in SiCl4/H2 microwave plasma was proposed. We also synthesized crystalline Si pillar film with a sharp apex nanostructure via the Au-catalyzed vapor–solid–solid (VSS) mechanism using the SiCl4/H2 microwave plasma, followed by H2 plasma treatment.
Furthermore, the resulting crystalline Si films (i.e., intrinsic Si film, doped Si film and Si pillar film) were implemented in flexible crystalline Si film-based electronics. The device performance showed that the flexible Si-thin film transistors using 100 nm intrinsic crystalline Si film as channel layer, exhibited excellent characteristics of high field-effect carrier mobility as high as 106 cm2/Vs and on/off current ratio of 1.2 × 106. Doped and intrinsic crystalline Si films could further be incorporated into a flexible crystalline Si-solar cells with a single junction n–i–p structure. They showed the best performance in open-circuit voltage of 0.54 V, short-circuit current density of 20.91 mA/cm2, and efficiency of 7.36%. In addition, the flexible Si-field emission display using the H2 plasma treated B-doped crystalline Si pillar film as cathode revealed high electron field emission behavior and stability, viz., the low turn-on field of 5.88 V/μm, high current density of 1.39 mA/cm2@10 V/μm, and extremely long half-lifetime over 10 hr were achieved. The superior flexibility for these soft electronics were also demonstrated.
These results thus represent important steps toward a low-cost approach to high-performance flexible crystalline Si film-based electronics.
[1] I.C. Cheng and S. Wagner, Overview of flexible electronics technology. In: W.S. Wong and A. Salleo, editors. Flexible electronics: Materials and applications. Springer, (2009) 2–16.
[2] T.K. Chuang, M. Troccoli, P.C. Kuo, A. Jamshidi and M.K. Hatalis, “Top-emitting 230 dots/in. active-matrix polymer light-emitting diode displays on flexible metal foil substrates”, Applied Physics Letters, 90 (2007) 151114.
[3] C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl and J. West, “Organic thin film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Applied Physics Letters, 80 (2002) 1088–1090.
[4] G. Gu and S.R. Forrest, “Design of flat-panel displays based on organic light- emitting devices”, IEEE Journal of Selected Topics in Quantum Electronics, 4 (1998) 83–99.
[5] J.K. Rath, “Low temperature polycrystalline silicon: A review on deposition, physical properties and solar cell applications”, Solar Energy Materials & Solar Cells 76 (2003) 431–487.
[6] K. Nakahata, A. Miida, T. Kamiya, C.M. Fortmann and I. Shimizu, “Carrier transport, structure and orientation in polycrystalline silicon on glass”, Thin Solid Films, 337 (1999) 45–50.
[7] M. Kondo, Y. Nasuno, H. Mase, T. Wada and A. Matsuda, “Low-temperature fabrication of microcrystalline silicon and its application to solar cells”, Journal of Non-Crystalline Solids, 299–302 (2002) 108–112.
[8] V.S. Waman, M.M. Kamble, S.S. Ghosh, A. Mayabadi, V.G. Sathe, H.M. Pathan, S.D. Shinde, K.P. Adhi and S.R. Jadkar, “Highly conducting phosphorous doped n-type nc-Si:H films by HW-CVD for c-Si heterojunction solar cells”, RSC Advances, 2 (2012) 9873–9880.
[9] A.T. Voutsas and M.K. Hatalis, “Deposition and crystallization of a‐Si low pressure chemically vapor deposited films obtained by low-temperature pyrolysis of disilane”, Journal of the Electrochemical Society, 140 (1993) 871–877.
[10] L. Haji, P. Joubert, J. Stoemenos and N.A. Economou, “Mode of growth and microstructure of polycrystalline silicon obtained by solid‐phase crystallization of an amorphous silicon film”, Journal of Applied Physics, 75 (1994) 3944–3952.
[11] M.S. Haque, H. A. Naseem and W.D. Brown, “Aluminum‐induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperatures”, Journal of Applied Physics, 79 (1996) 7529–7536.
[12] L. Hultman, A. Robertsson, H.T.G. Hentzell, I. Engström and P.A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction”, Journal of Applied Physics, 62 (1987) 3647–3655.
[13] S.F. Gong, H.T.G. Hentzell and A.E. Robertsson, “Initial solid‐state reactions between Sb and amorphous Si thin films”, Journal of Applied Physics, 64 (1988) 1457–1463.
[14] Z. Jin, G.A. Bhat, M. Yeung, H.S. Kwok and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, Journal of Applied Physics, 84 (1998) 194–200.
[15] S.W. Lee, Y.C. Jeon and S.K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Applied Physics Letters, 66 (1995) 1671–1673.
[16] J.L. Batstone and C. Hayzelden, “Microscopic processes in crystallization,” Solid State Phenomena, 37–38 (1994) 257–268.
[17] S.W. Lee, S.K. Jo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization”, IEEE Electron Device Letters, 17 (1996) 160–162.
[18] J.S. Im, H.J. Kim and M.O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films”, Applied Physics Letters, 63 (1993) 1969–1971.
[19] Gordijn, M. Marinkovic and H. Stiebig, “Ambipolar charge transport in microcrystalline silicon thin-film transistors”, Journal of Applied Physics, 109 (2011) 024504.
[20] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Film, 337 (1999) 1–6.
[21] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and U. Graf, “Material and solar cell research in microcrystalline silicon”, Solar Energy Materials & Solar Cells, 78 (2003) 469–491.
[22] J.E. Stevens, Electron cyclotron resonance plasma sources. O.A. Popov, editor. High density plasma sources: Design, physics and performance. William Andrew: New York, (1997) 312–319.
[23] P. K. Weimer, “TFT-new thin-film transistor”, Proceedings of the Institute of Radio Engineers, 50 (1962) 1462–1469.
[24] N. Yamauchi and R. Reif, “Polycrystalline silicon thin films processed with silicon ion implantation and subsequent solid-phase crystallization: Theory, experiments, and thin-film transistor applications”, Journal of Applied Physics, 75 (1994) 3235–3257.
[25] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 432 (2004) 488–492.
[26] E. Fortunato, P. Barquinha and R. Martins, “Oxide semiconductor thin-film transistors: A review of recent advances”, Advanced Materials, 24 (2012) 2945–2986.
[27] S. D. Theiss and S. Wagner, “Amorphous silicon thin-film transistors on steel foil substrates”, IEEE Electron Device Letters, 17 (1996) 578–580.
[28] N.D. Yang, G. Harkin, R.M. Bunn, D.J. McCulloch, R.W. Wilks and A.G. Knapp, “Novel fingerprint scanning arrays using polysilicon TFT’s on glass and polymer substrates”, IEEE Electron Device Letters, 18 (1997) 19–20.
[29] J.S. Park, W.J. Maeng, H.S. Kim and J.S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices”, Thin Solid Films, 520 (2012) 1679–1693.
[30] S.D Wolf, A. Descoeudres, Z.C. Holman and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review”, Green, 2 (2012) 7–24.
[31] National Renewable Energy Laboratory (NREL), http://www.nrel.gov/ncpv/
[32] B. Qi and J. Wang, “Fill factor in organic solar cells”, Physical Chemistry Chemical Physics, 15 (2013) 8972–8982.
[33] R.H. Fowler and L. Nordheim, “Electron emission in intense electric fields”, Proceedings of the Royal Society of London. Series A, 119 (1928) 173–181.
[34] Y. Cheng and O. Zhou, “Electron field emission from carbon nanotubes”, Comptes Rendus Physique, 4 (2003) 1021–1033.
[35] J.X. Guo, Z. Sun, B.K. Tay and X.W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias”, Applied Surface Science, 214 (2003) 351–358.
[36] T.Y. Tsai, C.Y. Lee, N.H. Tai and W.H. Tuan, “Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices”, Applied Physics Letters, 95 (2009) 013107.
[37] M.Y. Zhu, R.A. Outlaw, M. Bagge-Hansen, H.J. Chen and D.M. Manos, “Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD”, Carbon, 49 (2011) 2526–2531.
[38] K.J. Sankaran, N.H. Tai and I.N. Lin, “Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films”, Applied Physics Letters, 104 (2014) 031601.
[39] T. Hirano, S. Kanemaru, H. Tanoue and J. Itoh, “Fabrication of a new Si field emitter tip with metal-oxide-semiconductor field-effect transistor (MOSFET) structure”, Japanese Journal of Applied Physics, 35 (1996) 6637–6640.
[40] E.A. Adler, Z. Bardai, R. Forman, D.M. Goevbel, R.T. Longo and M. Sokolich, “Demonstration of low-voltage field emission”, IEEE Transactions on Electron Devices, 38 (1991) 2304–2308.
[41] F. Werner, D. Korzec and. J Engemann, “Slot antenna 2.45 GHz microwave plasma source”, Plasma Sources Science and Technology, 3 (1994) 473–481.
[42] P.K. Chu, N.W. Cheung, C. Chan, B. Mizuno and O.R. Monteiro, Semiconductor applications. In: A. Anders, editors. Handbook of Plasma immersion ion implantation and deposition. John Wiley & Sons Inc: England, (2000) 637–681.
[43] M. Brake, J. Hinkle, J. Asmussen, M. Hawley and R. Kerber, “Dissociation and recombination of oxygen atoms produced in a microwave discharge. Part I. Experiment”, Plasma Chemistry and Plasma Processing, 3 (1983) 63–78.
[44] P. Prat, T. Cloitre and R. L. Aulombard, “Thermal and mechanical properties of silicon tetrachloride (SiCl4) and germanium tetrachloride (GeCl4) in their vapor and liquid phases”, Chemical Vapor Deposition, 13 (2007) 199–203.
[45] K.J. Sankaran, S. Kunuku, B. Sundaravel, P.Y. Hsieh, H.C. Chen, K.C. Leou, N.H. Tai and I.N. Lin, “Gold nanoparticle–ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications”, Nanoscale, 7 (2015) 4277–4385.
[46] C.H. Lee, A. Sazonov and A. Nathan, “High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition”, Applied Physics Letters, 86 (2005) 222106.
[47] M. Zeman, Advanced amorphous silicon solar cell technologies. In: J. Poortmans and V. Arkhipov, editors. Thin film solar cells: Fabrication, characterization and applications. John Wiley & Sons Ltd: England, (2006) 173–236.
[48] J. Plá, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte and F. Rubinelli, “Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells”, Thin Solid Films, 425 (2003) 185–192.
[49] R. Tiwari and S. Chandra, “Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film”, Journal of Micromechanics and Microengineering, 23 (2013) 095020.
[50] J.K. Rath, M. Brinza, Y. Liu, A. Borreman and R.E.I. Schropp, “Fabrication of thin film silicon solar cells on plastic substrate by very high frequency PECVD”, Solar Energy Materials & Solar Cells, 94 (2010) 1534–1541.
[51] J. Zhang, M. Trifunovic, M. van der Zwan, H. Takagishi, R. Kawajiri, T. Shimoda, C.I.M. Beenakker, and R. Ishihara, “Single-grain Si thin-film transistors on flexible polyimide substrate fabricated from doctor-blade coated liquid-Si”, Applied Physics Letters, 102 (2013) 243502.
[52] A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, L. Mariucci and G. Fortunato, “Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic”, Solid-State Electronics, 52 (2008) 348–352.
[53] Z.T. Zhu, E. Menard, K. Hurley, R.G. Nuzzo and J.A. Rogersa, “Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates”, Applied Physics Letters, 86 (2005) 133507.
[54] G. Qin, H.C. Yuan, H. Yang, W. Zhou and Z. Ma, “High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate”, Semiconductor Science and Technology, 26 (2011) 025005.
[55] C. Joshi, B. Blue, C.E. Clayton, E. Dodd, C. Huang, K.A. Marsh, W.B. Mori and S. Wang “High energy density plasma science with an ultrarelativistic electron beam”, Physics of Plasmas, 9 (2002) 1845–1855.
[56] J. Yota, J. Hander and A.A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films”, Journal of Vacuum Science & Technology A, 18 (2000) 372–376.
[57] D. Ohba, C.H. Lai, Z. Tang and H. Shirai, “Surface chemistry of preferentially (111)- and (220)-crystal-oriented microcrystalline silicon films by radio-frequency plasma-enhanced chemical vapor deposition”, Japanese Journal of Applied Physics, 49 (2010) 081402.
[58] Z. Wang, Y. Lou, K. Lin, X. Lin, R. Huang and J. Wei, “Effects of hydrogen dilution on deposition process of nano-crystalline silicon film by SiCl4/H2 plasma”, Journal of Physics D: Applied Physics, 39 (2006) 3030–3035.
[59] X. Lin, K. Lin, C. Huang, Y. Yu, Y. Luo, C. Yu and R. Huang, “Growth mechanism of polycrystalline silicon films from hydrogen-diluted SiCl4 at low temperature”, Journal of Applied Physics, 98 (2005) 034907.
[60] T.C. Wong and J.J. Wu, “Effects of silicon tetrachloride concentration on nanocrystalline silicon films growth”, Thin solid films, 437 (2003) 45–50.
[61] G. Bruno, P. Capezzuto, G. Cicala and F. Cramarossa, “Deposition of silicon films from SiCl4 glow discharges: A kinetic model of the surface process”, Journal of Applied Physics, 62 (1987) 2050–2056.
[62] H. Sugai, I. Ghanashev and M. Nagatsu, “High-density flat plasma production based on surface waves”, Plasma Sources Science and Technology, 7 (1998) 192–205.
[63] M. Lejeune, W. Beyer, R. Carius, J. Müller and B. Rech, “Silicontetrachloride based microcrystalline silicon for application in thin film silicon solar cells”, Thin Solid Films, 451–452 (2004) 280–284.
[64] C.E. Sroog, “Polyimides”, Journal of Polymer Science: Macromolecular Reviews, 11 (1976) 161–208.
[65] T. Matsui, M. Tsukiji, H. Saika, T. Toyama and H. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells”, Journal of Non-Crystalline Solids, 299–302 (2002) 1152–1156.
[66] J.K. Saha, N. Ohse, K. Hamada, H. Matsui, T. Kobayashi, H. Jia and H. Shirai, “Fast deposition of microcrystalline Si films from SiH2Cl2 using a high-density microwave plasma source for Si thin-film solar cells”, Solar Energy Materials & Solar Cells, 94 (2010) 524–530.
[67] C.J. Zhong, H. Tanaka, S Sugawa and T. Ohmi, “Effect of power density on the structure properties of microcrystalline silicon film prepared by high-density low-ion-energy microwave plasma”, Thin Solid Films, 493 (2005) 54–59.
[68] Y. Toyoshima, K. Arai and A. Matsud, “Lattice orientation of microcrystallites in μc-Si:H”, Journal of Non-Crystalline Solids, 114 (1989) 819–821.
[69] H. Kakinuma, M. Mohri, M. Sakamoto, and T. Tsuruoka, “Structural properties of polycrystalline silicon films prepared at low temperature by plasma chemical vapor deposition”, Journal of Applied Physics, 70 (1991) 7374–7381.
[70] H. Shirai, T. Saito, Y. Lo, H. Matsui and T. Kobayashi, “Surface chemistry and preferential crystal orientation on the H and Cl terminated silicon surface”, Journal of Applied Physics, 101 (2007) 033531.
[71] S. Rivillon, Y.J. Chabal, L.J. Webb, D.J. Michalak, N.S. Lewis, M.D. Halls and K. Raghavachari, “Chlorination of hydrogen-terminated silicon (111) surfaces”, Journal of Vacuum Science & Technology A, 23 (2005) 1100–1106.
[72] L. Guo, Y. Toyoshima, M. Kondo and A. Matsuda, “Low-temperature growth of crystalline silicon on a chlorine-terminated surface”, Applied Physics Letters, 75 (1999) 3515–3517.
[73] B. Mereu, C. Rossel, E.P. Gusevb and M. Yang, “The role of Si orientation and temperature on the carrier mobility in metal oxide semiconductor field-effect transistors with ultrathin HfO2 gate dielectrics”, Journal of Applied Physics, 100 (2006) 014504.
[74] L. Chang, M. Ieong and M. Yang, “CMOS circuit performance enhancement by surface orientation optimization”, IEEE Transactions on Electron Devices, 51 (2004) 1621–1627.
[75] W.G. Lee, T.H. Lim and J. Jang, "Flexibility of low temperature polycrystalline silicon thin-film transistor on tungsten foil", Japanese Journal of Applied Physics, 50 (2011) 03CB03.
[76] T. Serikawa and F. Omata, "High-mobility poly-Si TFT's Fabricated on flexible stainless-steel substrates", IEEE Electron Device Letters, 20 (1999) 574–576.
[77] S.H. Kim, J.H. Cheon, E.B. Kim, J.H. Bae, J.H. Hur and J. Jang, "High-performance hydrogenated amorphous silicon TFT on flexible metal foil with polyimide planarization", Journal of Non-Crystalline Solids, 354 (2008) 2529–2533.
[78] Y.H. Kim, W.K. Kim, J.I. Han and D.G. Moon, "Fabrication of low-temperature-polysilicon thin-film transistors on flexible substrates using excimer-laser crystallization", Journal of the Society for Information Display, 15 (2007) 1105–1108.
[79] A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, L. Mariucci and G. Fortunato, "Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic", Solid-State Electronics, 52 (2008) 348–352.
[80] K.H. Cherenack, A.Z. Kattamis, B. Hekmatshoar, J.C. Sturm and S. Wagner, "Amorphous-silicon thin-film transistors fabricated at 300oC on a free-standing foil substrate of clear plastic", IEEE Electron Device Letters, 28 (2007) 1004–1006.
[81] H. Dong, Y. Kervran, N.e Coulon, O.D. Sagazan, E. Jacques and T. Mohammed-Brahim, "Highly flexible microcrystalline silicon n-type TFT on PEN bent to a curvature radius of 0.75 mm", IEEE Electron Device Letters, 62 (2015) 3278–3284.
[82] H.W. Zan, C.C. Yeh, H.F. Meng, C.C. Tsai and L.H. Chen, “Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer”, Advanced Materials, 24 (2012) 3509–3514.
[83] H. Zhou, D. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S. Huang, Y. Guo, W. Yan and M. Xu, “Dilution effect of Ar/H2 on the microstructures and photovoltaic properties of nc-Si:H deposited in low frequency inductively coupled plasma”, Journal of Applied Physics, 110 (2011) 023517.
[84] B.B. Van Aken, M. Duchamp, C.B. Boothroyd, R.E. Dunin-Borkowski and W.J. Soppe, “EELS measurements of boron concentration profiles in p-a-Si and nip a-Si solar cells”, Journal of Non-Crystalline Solids, 358 (2012) 2179–2182.
[85] H.Y. Mao, S.Y. Lo, D.S. Wuu, B.R. Wu, S.L. Ou, H.Y. Hsieh and R.H. Horng, “Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications”, Thin Solid Films, 520 (2012) 5200–5205.
[86] W.S. Yan, D.Y. Wei, S. Xu, C.C. Sern and H.P. Zhou, “Highly doped p-type microcrystalline Si films fabricated by a low-frequency inductively coupled plasma at a low temperature”, Journal of Physics D: Applied Physics, 44 (2011) 35401.
[87] J.C. Alonso, T. Oshima, A. Yamada, M. Konagai and K. Takahashi, “Low-temperature epitaxial growth of undoped and n-doped silicon by photochemical vapor deposition using SiH4/SiH2Cl2/H2/PH3 mixtures”, Thin Solid Films, 237 (1994) 98–104.
[88] P. Kumar, M. Kupich, D. Grunsky and B. Schroeder, “Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells”, Thin Solid Films, 501 (2006) 260–263.
[89] A.G. Benvenuto, R.H. Buitrago and J.A. Schmidt, “Doped polycrystalline silicon thin films deposited on glass from trichlorosilane”, Chemical Vapor Deposition, 21 (2015) 54–62.
[90] S.Y. Huang, Q.J. Cheng, S. Xu and K. Ostrikov, “Inductively coupled plasma-assisted RF magnetron sputtering deposition of boron-doped microcrystalline Si films”, Journal of Alloys and Compounds, 499 (2010) 166–170.
[91] J.R. Flemish and R.E. Tressler, “Phosphorus doping of silicon using a solid planar diffusion source at reduced pressures”, Journal of The Electrochemical Society, 138 (1991) 233–238.
[92] P.Y. Hsieh, C.Y. Lee and N.H. Tai, “A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl4/H2 microwave plasma for flexible thin film transistors”, Journal of Materials Chemistry C, 3 (2015) 7513–7522.
[93] S. Nishida, H. Tasaki, M. Konagai and K. Takahashi, “Highly conductive and wide band gap amorphous-microcrystalline mixed-phases silicon films prepared by photochemical vapor deposition”, Journal of Applied Physics, 58 (1985) 1427–1431.
[94] P. Kumar and B. Schroeder, “Electrical properties/Doping efficiency of doped microcrystalline silicon layers prepared by hot-wire chemical vapor deposition”, Thin Solid Films, 516 (2008) 580–583.
[95] National Physical Laboratory, Sputter Yield Values: http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values
[96] X.D. Pi, R. Gresback, R.W. Liptak, S.A. Campbell and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals”, Applied Physics Letters, 92 (2008) 123102.
[97] A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat, “Thin-film silicon solar cell technology”, Progress In Photovoltaics: Research and Applications, 12 (2004) 113–142.
[98] H. Xiao, J. Wang, H. Huang, L. Lu, Q. Lin, Z. Fan, X. Chen, C. Jeong, X. Zhu and D. Li, "Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer", Nano Energy, 11 (2015) 78–87.
[99] M.N. van den Donker, A. Gordijn, H. Stiebig, F. Finger, B. Rech, B. Stannowski, R. Bartl, E.A.G. Hamers, R. Schlatmann and G.J. Jongerden, "Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept", Solar Energy Materials & Solar Cells, 91 (2007) 572–580.
[100] T. Söderström, F.J. Haug, V. Terrazzoni-Daudrix and C. Ballif, "Flexible micromorph tandem a-Si/μc-Si solar cells", Journal of Applied Physics, 107 (2010) 014507.
[101] T. Söderström, F.J. Haug, V. Terrazzoni-Daudrix and C. Ballif, "Optimization of amorphous silicon thin film solar cells for flexible photovoltaics", Journal of Applied Physics, 103 (2008) 114509.
[102] S.Y. Lo, D.S. Wuu, C.H. Chang, C.C. Wang, S.Y. Lien and R.H. Horng, "Fabrication of flexible amorphous-Si thin-film solar cells on a parylene template using a direct separation process", IEEE Transactions on Electron Devices, 58 (2011) 1433–1439.
[103] J. Ni, J. Zhang, Y.Cao. X. Wang, X. Chen, X. Geng and Y. Zhao, "Low temperature deposition of high open-circuit voltage (>1.0 V) p–i–n type amorphous silicon solar cells", Solar Energy Materials & Solar Cells, 95 (2011) 1922–1926.
[104] S.A. Filonovich, P. Alpuim, L. Rebouta, J.E. Bourée and Y.M. Soro, "Hydrogenated amorphous and nanocrystalline silicon solar cells deposited by HWCVD and RF-PECVD on plastic substrates at 150oC", Journal of Non-Crystalline Solids, 354 (2008) 2376–2380.
[105] J. Wang, K. Taob, H. Cai, D. Zhang and G. Li, "A study of the i/p interface for flexible n-i-p a-Si:H thin film solar cells", Materials Science in Semiconductor Processing, 25 (2014) 186–189.
[106] I. Brodie and C.A. Spindt, “Vacuum Microelectronics”, Advances in Electronics and Electron Physics, 83 (1992) 1–106.
[107] P.R. Schwoebel and I. Brodie, “Surface-science aspects of vacuum microelectronics”, Journal of Vacuum Science & Technology B, 13 (1995) 1391–1410.
[108] D. Temple, W.D. Palmer, L.N. Yadon, J.E. Mancusi, D. Vellenga and G.E. McGuire, “Silicon field emitter cathodes: Fabrication, performance, and applications”, Journal of Vacuum Science & Technology A, 16 (1998) 1980–1990.
[109] K.J. Sankaran, K. Srinivasu, K.C. Leou, N.H. Tai and I.N. Lin, “High stability electron field emitters made of nanocrystalline diamond coated carbon nanotubes”, Applied Physics Letters, 103 (2013) 251601.
[110] Y.S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier, C. Xiao and A. Hirose, “Ultrathin W-Al dual interlayer approach to depositing smooth and adherent nanocrystalline diamond films on stainless steel”, ACS Applied Materials & Interfaces, 2 (2010) 335–338.
[111] W. Li, J. Zhou, X.G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan and K. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography”, Nanotechnology, 19 (2008) 135308.
[112] X.D. Bai, C.Y. Zhi, S. Liu, E.G. Wang and Z.L. Wang, “High-density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics”, Solid State Communications, 125 (2003) 185–188.
[113] F. Zhao, G.A. Cheng, R.T. Zheng, D.D. Zhao, S.L. Wu and J.H. Deng, “Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires”, Nanoscale Research Letters, 6 (2011) 176.
[114] Y.F. Tzeng, H.C. Wu, P.S. Sheng, N.H. Tai, H.T. Chiu, C.Y. Lee and I.N. Lin, “Stacked silicon nanowires with improved field enhancement factor”, ACS Applied Materials & Interfaces, 2 (2010) 331–334.
[115] T. Chang, F. Lu, S. Kunuku, K. Leou, N. Tai and I. Lin, “Enhanced electron field emission properties from hybrid nanostructures of graphene/Si tip array”, RSC Advances, 5 (2015) 2928–2933.
[116] T.H. Chang, S. Kunuku, J. Kurian, A. Manekkathodi, L.J. Chen, K.C. Leou, N.H. Tai and I.N. Lin, “Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays”, ACS Applied Materials & Interfaces, 7 (2015) 7732–7740.
[117] T.C. Cheng, J. Shieh, W.J. Huang, M.C. Yang, M.H. Cheng, H.M. Lin and M. N. Chang, “Hydrogen plasma dry etching method for field emission application”, Applied Physics Letters, 88 (2006) 263118.
[118] F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello and S.T. Lee, “Electron field emission from silicon nanowires”, Applied Physics Letters, 75 (1999) 1700–1703.
[119] Y.W. Ok and T.Y. Seong, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing”, Applied Physics Letters, 88 (2006) 043106.
[120] K.A. O’Neill, M.Z. Shaikh, G. Lyttle, S. Anthony, Y.C. Fan, S.K. Persheyev and M.J. Rose, “Laser annealed HWCVD and PECVD thin silicon films. Electron field emission”, Thin Solid Film, 501 (2006) 310–313.
[121] X.F. Chen, W. Zhu, H. Lu, J.S. Pan, H.J. Bian, O.K. Tan and C.Q. Sun, “Si field emitter arrays coated with thin ferroelectric films”, Ceramics International, 34 (2008) 971–977.
[122] X.F. Chen, H. Lu, W.G. Zhu and O.K. Tan, “Enhanced field emission of silicon tips coated with sol–gel-derived (Ba0.65Sr0.35)TiO3 thin film”, Surface & Coatings Technology, 198 (2005) 266– 269.
[123] S. Johnson, A. Markwitz, M. Rudolphi, H. Baumann, S.P. Oei, K.B.K. Teo and W.I. Milne, “Field emission properties of self-assembled silicon nanostructures on n- and p-type silicon”, Applied Physics Letters, 85 (2004) 3277–3279.
[124] S. Johnson, A. Markwitz, M. Rudolphi, H. Baumann, S.P. Oei, K.B.K. Teo and W.I. Milne, “Field emission properties of self-assembled silicon nanostructures formed by electron beam annealing”, Current Applied Physics, 6 (2006) 503–506.
[125] S.N. Mohammad, “For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism”, The Journal of Chemical Physics, 131 (2009) 224702.
[126] M. Semenenko, A. Evtukh, O. Yilmazoglu, H.L. Hartnagel and D. Pavlidis, “A novel method to form conducting channels in SiOx(Si) films for field emission application”, Journal of Applied Physics, 107 (2010) 013702.
[127] P.Y. Hsieh, C.Y. Lee and N.H. Tai, “Flexible solar cells using doped crystalline Si film prepared by self-biased sputtering solid doping source in SiCl4/H2 microwave plasma”, ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.5b11151.
[128] C.Y. Kuo and C. Gau, “Vapor–solid–solid growth of crystalline silicon nanowires using anodic aluminum oxide template”, Thin Solid Films, 519 (2011) 3603–3607.
[129] C.H. Lee, B.J. Kim and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells”, Progress in Photovoltaics: Research and Applications, 22 (2014) 362–370.
[130] C.Y. Wen, M.C. Reuter, J. Tersoff, E.A. Stach and F. M. Ross, “Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon Nanowires”, Nano Letters, 10 (2010) 514–519.
[131] Y. Wang, V. Schmidt, S. Senz and U. Gösele, “Epitaxial growth of silicon nanowires using an aluminum catalyst”, Nature Nanotechnology, 1 (2006) 186–189.
[132] R.M. Ranade, S.S. Ang, and W.D. Brown, “Reactive ion etching of thin gold films”, Journal of Electrochemical Society, 140 (1993) 3676–3678.
[133] F.T. Aldridge, “High speed anisotropic reactive ion etching of gold films”, Journal of Electrochemical Society, 142 (1995) 1563–1568.
[134] T. Matsukawa, S. Kanemaru, K. Tokunaga and J. Itoh, “Effects of conduction type on field-electron emission from single Si emitter tips with extraction gate”, Journal of Vacuum Science & Technology B, 18 (2000) 1111–1114.
[135] Y.L. Chueh, L.J. Chou, S.L. Cheng, J.H. He, W.W. Wu and L.J. Chen, “Synthesis of taperlike Si nanowires with strong field emission”, Applied Physics Letters, 86 (2005) 133112.
[136] S.R.P. Silva, R.D. Forrest, J.M. Shannon and B.J. Sealy, “Electron field emission from amorphous silicon”, Journal of Vacuum Science & Technology B, 17 (1999) 596–600.
[137] Y.F. Tang, S.R.P. Silva, B.O. Boskovic, J.M. Shannon and M.J. Rose, “Electron field emission from excimer laser crystallized amorphous silicon”, Applied Physics Letters, 80 (2002) 4154–4156.
[138] M.J. Colgan and M.J. Brett, “Field emission from carbon and silicon films with pillar microstructure”, Thin Solid Films, 389 (2001) 1–4.