簡易檢索 / 詳目顯示

研究生: 翁莉娟
Weng, Li Chuan
論文名稱: 利用快速熱熔磊晶法於矽基板上製備鍺錫合金結構及光致發光光譜特性分析
Photoluminescence Study of GeSn fabricated on Si substrate by Rapid Melt Growth Method
指導教授: 李明昌
Lee, Ming Chang
口試委員: 王立康
曾培哲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 鍺錫合金微光致發光快速熱熔磊晶
外文關鍵詞: GeSn, Micro-PL, Rapid Melt Growth
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用快速熱熔磊晶法(RMG)於矽基板上製備鍺錫合金結構,探討其材料特性。我們以RMG法製備出直條狀結構,因為錫的熔點較低,所以在磊晶過程中會被推至尾端最後固化析出,因此直條狀結構尾端會有明顯的鍺錫分界面,以致於高濃度鍺錫合金分布集中在邊界處,且遠離純錫界面合金濃度會急劇下降。我們將針對直條狀結構距成核窗不同位置下微光致發光(Micro-PL)的光譜量測,探討其濃度變化,並以微拉曼(Micro-Raman)量測結果互相比對。
    因為鍺錫合金只分布在直條狀結構尾端幾個微米的範圍,而為了能有大面積、高濃度的鍺錫合金,我們試著在鍍膜時增加錫的濃度,利用RMG法製備大面積排列的柱狀結構,並以SEM以及TEM分析其磊晶情形與鍺錫合金的濃度分布狀況,另外加入非晶矽層來測試改善鍺錫合金的濃度分布情況。


    The material properties of GeSn structures fabricated on Silicon substrate by Rapid-Melt-Growth (RMG) method was investigated. We fabricated several GeSn strips, and because of the lower melting point of Sn, it would be pushed to the end of the strip and then solidified during the liquid phase epitaxial process. Therefore, there would be a varying concentration of Sn distributed inside the GeSn strip. We measured the Micro-Photoluminescence (Micro-PL) spectra at different locations from seed window of the strip and analyzed the concentration of Sn. In addition, the above results were compared with the results obtained from Micro-Raman spectroscopy.
    In order to have large-area, high-concentration of GeSn alloy on Si substrate by RMG method, we fabricated a large-area GeSn rod array and analyzed the crystal quality and element concentration in each rod by SEM and TEM. Besides, we studied the RMG process on the GeSn alloy with an amorphous silicon (a-Si) layer cap and evaluated the influence on the Sn distribution.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 論文架構 5 第二章 理論背景 6 2.1 鍺能帶結構工程 6 2.1.1 高濃度n-type佈植 6 2.1.2 雙軸拉伸應力 8 2.1.3 鍺錫合金 11 2.2 快速熱熔磊晶法 15 2.2.1 快速熱熔磊晶法 15 2.2.2 快速熱熔磊晶法整合鍺錫合金於矽基板 21 2.2.3 元件結構設計 25 2.3 微光致發光(Micro-PL)架構整合 26 2.3.1 自由空間(Free space)架構 26 2.3.2 光學顯微鏡整合(OM Integrated)架構 28 第三章 元件製作流程 30 3.1 元件製作流程圖 30 3.2 元件製程細節 34 第四章 實驗量測結果與討論 43 4.1 直狀結構RMG元件材料分析 43 4.1.1 Micro-PL分析 44 4.1.2 Micro-Raman分析 51 4.2 大面積柱狀結構RMG元件材料分析 55 第五章 結論與未來展望 67 參考文獻 70 附錄一、元件製作流程表 74

    [1] J. Liu, “Monolithically Integrated Ge-on-Si Active Photonics,” Photonics 1, 162-197 (2014).
    [2] X. Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Photonics,” B.S. Physics, Peking University, (2004).
    [3] V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Physical Review B 73, 125207 (2006).
    [4] M. El Kurdi, T. Kociniewski, “Enhanced photoluminescence of heavily n-doped germanium,” Applied Physics Letters 94, 191107 (2009).
    [5] J. Liu, X. Sun, D. Pan, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272-11277 (2007).
    [6] S. L. Cheng, J. Lu, “Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019-10024 (2009).
    [7] X. Sun, J. Liu “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Applied Physics Letters 95, 011911 (2009).
    [8] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198-1200 (2009).
    [9] J. Liu, X. Sun, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679-681 (2010).
    [10] C. G. Van de Walle, “Band lineups and deformation potentials in model-solid theory,” Phys. Rev. B 39, 1871-1883 (1989).
    [11] M. El Kurdi, H. Bertin, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Applied Physics Letters 96 (4), 041909-041903 (2010).
    [12] Y. Huo, H. Lin, R. Chen, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Applied Physics Letters 98, 011111 (2011).
    [13] R. W. Olesinski, G. J. Abbaschian, “The Ge-Sn (Germanium-Tin) system,” Bulletin of Alloy Phase Diagrams 5, 265 (1984).
    [14] J. Kouvetakis, M. Bauer, J. Menendez, “GeSn alloys and ordered phases with direct tunable bandgaps grown directly on silicon,” US Patent, 7589003 B2 (2009)
    [15] R. Chen, H. Lin, Y. Huo, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− x Sn x alloys grown by molecular beam epitaxy,” Applied Physics Letters 99, 181125 (2011).
    [16] H. Lin, “Growth and characterization of GeSn and SiGeSn alloys for
    optical interconnects,” Stanford University, (2012).
    [17] J. Werner, “Molecular beam epitaxy grown GeSn p-i-n photodetectors integrated on Si,” Thin Solid Films 520, 3361-3364 (2012).
    [18] B. Dutt, “Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser,” IEEE 19(5), (2013).
    [19] D. S. Sukhdeo, H. Lin, “Approaches for a Viable Germanium Laser: Tensile Strain, GeSn Alloys, and n-Type Doping,” IEEE (2013).
    [20] S. Takeuchi, A. Sakai, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semiconductor Science and Technology 22, S231-S235 (2007).
    [21] B. Vincent, Y. Shimura, S. Takeuchi, “Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors,” Microelectronic Engineering 88, 342-346 (2011).
    [22] Y. Liu, M. D. Deal, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Applied Physics Letters 84, 2563 (2004).
    [23] 吳庭孝, “利用快速熱熔再結晶法製作金半金結構之面收型鍺紅外光光子偵測器於矽基板上,” 國立清華大學光電工程研究所 (2012).
    [24] M. Kurosawa, Y. Tojo, “Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth,” Appl. Phys. Lett. 101, 091905 (2012).
    [25] E. Scheil, Z. Metallk, 34, 70 (1942).
    [26] J. Wen, Z. Liu, L. Li, “Room temperature photoluminescence of Ge-on-insulator structures formed by rapid melt growth,” J. Appl. Phys. 113, 143107 (2013).
    [27] M. Matsue, Y. Yasutake, S. Fukatsu, “Strain-induced direct band gap shrinkage in local Ge-on-insulator structures fabricated by lateral liquid-phase epitaxy,” Applied Physics Letters 104, 031106 (2014).
    [28] M. Miyao, T. Tanaka, K. Toko, and M. Tanaka, “Giant Ge-on-Insulator Formation by Si-Ge Mixing-Triggered Liquid-Phase Epitaxy,” Applied Physics Express 2, 045503 (2009).
    [29] M. Kurosawa, Y. Tojo, R. Matsumura, T. Sadoh, “Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth,” Applied Physics Letters 101, 091905 (2012).
    [30] R. Matsumura, M. Anisuzzaman, “Laterally-Graded Doping into Ge-on-Insulator by Combination of Ion-Implantation and Rapid-Melting Growth,” ECS Solid State Letters 2(7), P58-P60 (2013).
    [31] R. Matsumura, Y. Kinoshita, “Self-Organized Travelling-Zone-Melting Growth of a-Ge/Sn/c-Ge Stacked-Structures for High-Quality GeSn”, ECS Journal of Solid State Science and Technology 3(10), P340-P343 (2014).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE