簡易檢索 / 詳目顯示

研究生: 曾祺哲
Tseng, Chi-Che
論文名稱: Type-II GaSb/GaAs Nano-Structures Prepared by Molecular Beam Epitaxy and Their Applications in Light-Emitting Devices
分子束磊晶成長之 Type-II 銻化鎵/砷化鎵奈米結構及其在發光元件的應用結構及其在發光元件的應用
指導教授: 吳孟奇
Wu, Meng-Chyi
林時彥
Lin, Shih-Yen
口試委員: 鄭克勇
李建平
綦振瀛
謝光前
林時彥
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 122
中文關鍵詞: 銻化鎵量子點
外文關鍵詞: GaSb, quantum dot
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中我們將探討銻化鎵量子點形成與光學操作機制和其應用。藉由觀察原子力顯微鏡與反射式高能電子繞射圖形可以判斷形成銻化鎵量子點需要的臨界厚度是~2.5 ML。也研究與觀察到銻化鎵量子點在不同成長溫度與不同五三比例均會影響成長結果;其中隨著五/三比例由2遞減至1,銻化鎵量子點成長模式將由IMF轉為SK模式。為了提升銻化鎵量子點的光特性,本篇論文利用銻分子浸泡法於成長銻化鎵量子之前後,使得光特性有所改善。其原因推測於銻化鎵量子點在較長時間的銻分子浸泡下不僅保護銻化鎵量子點成長後不受到砷與銻原子交互作用而破壞形貌,也減少銻化鎵/砷化鎵之間介面的缺陷產生,將有助於提升光元件應用。在銻分子浸泡過程中隨著砷分子比例增加,發現銻化鎵量子點形貌逐漸變成環狀。其原因推測銻化鎵量子點在高比例的砷分子環境中會有較多的砷原子與量子點表面接觸,以至於發生砷與銻原子置換而形成銻化鎵量子環。我們也藉由掃描穿遂電流系統針對不同砷-銻分子比例的銻化鎵試片進行表面單一量子結構掃描,驗證其量子結構的改變。
    隨著改善銻化鎵量子點的光特性,我們成功的研究出單一層銻化鎵/砷化鎵量子點發光二極體,也順利的在室溫下操作。銻化鎵/砷化鎵量子點的電激發光訊號也隨著元件操作在順向偏壓而觀察到。由於銻化鎵/砷化鎵量子點發光二極體的能隙接面是屬於型態二,因此針對銻化鎵/砷化鎵量子點元件給於不同順向電流和射入不同功率的雷射,其研究電激發光與光激發光訊號均有發現螢光會伴隨輸入能量增強而有藍移現象。且螢光藍移位置的與輸入功率的三次方根呈線性關係,此現象是能隙接面屬於型態二的最佳證明。研究發光二極體在不同溫度下操作時觀察光特性在100K實有最佳強度,且當元件操作溫度由10K提升至100K時,其螢光訊號會有特殊的藍位移。為了更進一步了解型態二的發光二極體之間的載子傳輸機制與量子機制,因此研究低溫下元件在不同功率下的發光與電流趨勢。發現電洞在價帶裡因受量子侷限而有重電洞與輕電洞兩者能階的差異。因此根據對銻化鎵/砷化鎵量子點一系列的研究與改善其光電特性,將有助於未來對型態二的發光二極體有更深入的了解。


    In this thesis, the critical thickness of GaSb QDs is determined to be ~ 2.5 ML by RHEED patterns and AFM measurements. The formation of GaSb QDs under different V/III ratios is investigated. The growth mode of the GaSb QDs would gradually change from IMF mode to the SK mode with decreasing V/III ratios. The different growth temperatures on the GaSb QDs are also investigated. The influence of Sb soaking times that optical property of QDs is improve when the increasing time of Sb soaking is investigated. The results suggest that long soaking time would not only protect GaSb QDs from As-Sb exchange during GaAs capping layer growth but also prevent defect formation in the GaSb/GaAs interfaces, which are advantageous for the fabrication and applications of optical device. The influence of background As on the morphologies of GaSb QDs is investigated. With increasing background As pressures, QD-to-QR transition is observed while similar QD/QR diameters are observed. The As atoms would actually act as a driller to drill down the QDs such that GaSb QRs would be observed with high As background pressures. The STM image of a single GaSb QR shown in this section has revealed that the rings are assembles of even smaller QDs instead of rings with smooth circle surfaces.
    GaSb/GaAs QD LED with a single GaSb QD layer is investigated. Significant EL is observed for the device under forward biases, which suggests that pronounced dipole transitions occur at the GaSb/GaAs interfaces. With increasing forward biases, the observed EL peak blue shift confirms that the origin of luminescence is from the type-II GaSb/GaAs QD structures. The linear dependence of PL and EL peaks over the third root of the excitation densities has confirmed that the type-II GaSb/GaAs QDs should be responsible for the luminescence. In the temperature-varying EL measurements lower than 100 K, the device has exhibited a unique optical characteristic of increasing EL intensity and peak blue shift with increasing temperatures. To enhance the device performances, additional carrier confinement schemes are required in the future. The understanding of the operation mechanisms for the device is advantageous for the practical application of type-II LEDs. The 10 K EL spectrums of the device near the turn-on voltage have revealed a dominant luminescence transition from the optical recombination of holes in the LH to HH states with increasing voltages. The large energy separation between HH and LH states suggests that large strain accumulation is observed for the GaSb QDs.

    Contents Abstract (in English and Chinese)..........................I Contents...................................................V List of Figures..........................................VII List of Tables.............................................X Chapter 1 Introduction and Motivation......................1 1.1 The Organization of This Thesis........................4 1.2 Growth System..........................................7 1.2.1 RHEED Pattern and Surface Morphology.................8 1.3 STM and AFM System....................................10 1.4 PL and EL System......................................14 Chapter 2 The Critical Thickness and The Influence of V/III Ratios of GaSb/GaAs Quantum Dots..........................27 2.1 The Critical Thickness of GaSb Quantum Dots...........27 2.1.1 Experiment..........................................28 2.1.2 Results and Discussions.............................30 2.1.3 Conclusion..........................................32 2.2 The Influence of V/III Ratios for GaSb Quantum Dots...32 2.2.1 Experiment..........................................33 2.2.2 Results and Discussions.............................35 2.2.3 Conclusion..........................................36 Chapter 3 The Influence of Different Growth Parameters on The Morphologies and Optical Characteristics of GaSb Quantum Dots..............................................44 3.1 The Influence of Sb Post Soaking Time on GaSb QDs.....45 3.1.1 Experiment..........................................45 3.1.2 Results and Discussions.............................47 3.1.3 Conclusion..........................................51 3.2 The Influence of Growth Temperatures on GaSb QDs......51 3.2.1 Experiment..........................................52 3.2.2 Results and Discussions.............................54 3.2.3 Conclusion..........................................55 Chapter 4 The Formation Mechanisms of GaSb Quantum Rings..66 4.1 GaSb QR Formation with Additional As Irradiations.....67 4.1.1 Experiment..........................................67 4.1.2 Results and Discussions.............................69 4.1.3 Conclusion................................................71 4.2 The GaSb Quantum Rings Formed with Background As......71 4.2.1 Experiment................................................72 4.2.2 Results and Discussions.............................74 4.2.3 Conclusion..........................................76 Chapter 5 The Application of Type-II GaSb/GaAs Quantum Dots in Light-Emitting Diodes..................................86 5.1 Room-Temperature Operation Type-II GaSb/GaAs Quantum Dot Infrared Light-Emitting Diode.........................87 5.1.1 Experiment..........................................88 5.1.2 Results and Discussions.............................90 5.1.3 Conclusion..........................................95 5.2 The Transition Dynamics of Type-II GaSb/GaAs Quantum-Dot Light -Emitting Diodes................................95 5.2.1 Experiment..........................................96 5.2.2 Results and Discussions.............................98 5.2.3 Conclusion.........................................101 Chapter 6 Conclusions....................................113 Reference................................................116

    [1] S. M. Sze, Semiconductor devices physics and technology 2nd edition, New York: Wiley, 2001, ch. 1.
    [2] M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure”, Phys. Rev. B, vol. 52, pp. 11969–11981, Oct. 1995.
    [3] J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, “Highly uniform InGaAs/GaAs quantum dots (∼15 nm) by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 65, pp. 1421-1423, Jul. 1994.
    [4] F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 71, pp. 22-24, May 1997.
    [5] H.Y. Liu, D.T. Childs, T.J. Badcock, K.M. Groom, I.R. Sellers, M. Hopkinson, R.A. Hogg, D.J. Robbins, D.J. Mowbray, and M.S. Skolnick, “High-Performance Three-Layer 1.3-μm InAs–GaAs Quantum-Dot Lasers With Very Low Continuous-Wave Room-Temperature Threshold Currents”, IEEE Photon. Technol. Lett., vol. 17, pp. 1139-1141, Fed. 2005.
    [6] Hideaki Saito, Kenichi Nishi, and Shigeo Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 □m emission”, Appl. Phys. Lett., vol. 73, pp. 2742-2744, Nov. 1998.
    [7] Jun Tatebayashi, Masao Nishioka, and Yasuhiko Arakawa, “Over 1.5 □m light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition” Appl. Phys. Lett., vol. 78, pp. 3469-3471, May 1998.
    [8] K. W. Berryman, S. A. Lyon, and Mordechai Segev, “Mid-infrared photoconductivity in InAs quantum dots”, Appl. Phys. Lett., vol. 70, pp. 1861-1863, Feb 1997.
    [9] Shiang-Feng Tang, Shih-Yen Lin, and Si-Chen Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector”, Appl. Phys. Lett., vol. 78, pp. 2428-2430, Feb. 2001.
    [10] W. H. Lin, K. P. Chao, C. C. Tseng, S. C. Mai, S. Y. Lin, and M. C. Wu, “The influence of In composition on InGaAs-capped InAs/GaAs quantum-dot infrared photodetectors”, J. Appl. Phys., vol. 106, pp. 054512-1-054512-3, Sep. 2005.
    [11] S. Y. Lin, W. H. Lin, C. C. Tseng, K. P. Chao, and S. C. Mai, “Voltage-tunable two-color quantum-dot infrared photodetectors”, Appl. Phys. Lett., vol. 95, pp. 123504-1-123504-3, Sep. 2009.
    [12] Wei-Sheng Liu, David M. T. Kuo, Jen-Inn Chyi, Wen-Yen Chen, Hsing-Szu Chang, and Tzu-Min Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer”, Appl. Phys. Lett., vol. 89, pp. 243103-1-243103-3, Dec. 2006.
    [13] H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 □m InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer”, Appl. Phys. Lett., vol. 92, pp. 111906-1-111906-3, Mar. 2008.
    [14] Shih-Yen Lin, Chi-Che Tseng, Tung-Hsun Chung, Wen-Hsuan Liao, Shu-Han Chen, and Jen-Inn Chyi, “Site-controlled self-assembled InAs quantum dots grown on GaAs substrates”, Nanotechnology, vol. 21, pp. 295304-1-295304-4, Jul. 2010.
    [15] F. Hatami, N. N. Ledentsov, M. Grundmann, J. Böhrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Zh. I. Alferov, “Radiative recombination in type-II GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 67, pp. 656-658, May 1995.
    [16] Kenji Suzuki, Richard A. Hogg, Koichi Tachibana, and Yasuhiko Arakawa, “Density Control of GaSb/GaAs Self-assembled Quantum Dots (~25nm) Grown by Molecular Beam Epitaxy”, J. J. Appl. Phys., vol. 37, pp. L203-L205, Feb. 1998.
    [17] S. R. Sheng, N. L. Rowell, and S. P. McAlister, “Photoluminescence in tensile-strained Si type-II quantum wells on bulk single-crystal SiGe substrates”, Appl. Phys. Lett., vol. 85, pp. 857-859, Aug. 2003.
    [18] M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II Band Alignment in Si1-xGex/Si(001) Quantum Wells: The Ubiquitous Type I Luminescence Results from Band Bending”, Phys. Rev. Lett., vol. 79, pp. 269-272, Jul. 1997.
    [19] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells”, J. Appl. Phys., vol. 92, pp. 5810-5813, Nov. 2002.
    [20] Diego Alonso-Álvarez, Benito Alén, Jorge M. García, and José M. Ripalda, “Optical investigation of type II GaSb/GaAs self-assembled quantum dots”, Appl. Phys. Lett., vol. 91, pp. 263103-1-263103-3, Dec. 2007.
    [21] Shih-Yen Lin, Chi-Che Tseng, Wei-Hsun Lin, Shu-Cheng Mai, Shung-Yi Wu, Shu-Han Chen, and Jen-Inn Chyi, “Room-Temperature Operation Type-II GaSb/GaAs Quantum-Dot Infrared Light-Emitting Diode”, Appl. Phys. Lett., vol. 96, pp. 123503-1-123503-3, Mar. 2010.
    [22] K. S. Hsu, T. T. Chiu, Wei-Hsun Lin, K. L. Chen, M. H. Shih, Shih-Yen Lin, and Yia-Chung Chang, “Compact microdisk cavity laser with type-II GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 98, pp. 051105-1-051105-3, Feb. 2011.
    [23] R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response”, Appl. Phys. Lett., vol. 90, pp. 173125-1-173125-3, Apr. 2007.
    [24] Wei-Hsun Lin, Chi-Che Tseng, Kuang-Ping Chao, Shu-Cheng Mai, Shu-Yen Kung, Shug-Yi Wu, Shih-Yen Lin, and Meng-Chyi Wu, “High-Temperature Operation GaSb/GaAs Quantum-Dot Infrared Photodetectors”, IEEE Photon. Technol. Lett., vol. 23, pp. 106-108, Jan. 2011.
    [25] M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, and D. Bimberg, “450 meV hole localization in GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 82, pp. 2706-2708, Apr. 2003.
    [26] M. Geller, C. Kapteyn, E. Stock, L. Müller-Kirsch, R. Heitz, and D. Bimberg, “Energy-selective charging oftype-II GaSb/GaAs quantum dots”, Physica E, vol. 21, pp. 474-478, 2004.
    [27] K. G. Eyink,D. H. Tomich, J. J. Pitz, L. Grazulis, K. Mahalingam, and J. M. Shank, “Self-assembly of heterojunction quantum dots”, Appl. Phys. Lett., vol. 88, pp. 163113-1-163113-3, Apr. 2006.
    [28] Ayahiko Ichimiya, and Philip I. Cohen, Reflection High Energy Electron Diffraction, UK: C AMBRIDGE UNIVERSITY PRESS, 2004, ch. 2.
    [29] D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructures, Chichester: Wiley, 1998, ch. 2, 3.
    [30] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy”, Phys. Rev. Lett., vol. 49, pp. 57-61, Jul. 1982.
    [31] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., vol. 56, pp.930-933, Mar. 1986.
    [32] B. E. A. Saleh, and M. C. Teich, FUNDAMENTALS of PHOTONICS 2nd edition, New Jersey:Wiley, 2007, ch. 13.
    [33] Zhiming M. Wang, Self-Assembled Quantum Dots, New York:Springer, 2007, ch. 1.
    [34] T. Nakai, S. Iwasaki, and K. Yamaguchi, “Control of GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., vol. 43, pp. 2122-2124, Apr. 2004.
    [35] Fumihiko Maeda, Yoshio Watanabe, and Masaharu Oshima, “Sb-induced surface reconstruction on GaAs(001)”, Phys. Rev. B, vol. 48, pp. 14733–14736, Nov. 1993.
    [36] K. Suzuki, R. A. Hogg, and Y. Arakawa, “Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy”, J. Appl. Phys., vol. 85, pp. 8349-8352, Mar. 1999.
    [37] G. Balakrishnan, J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, A. Jallipalli,L. R. Dawson, and D. L. Huffaker, “III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs”, Appl. Phys. Lett., vol. 89, pp. 161104-1-161104-3, Oct. 2006.
    [38] J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 89, pp. 203116-1-203116-3, Nov. 2006.
    [39] Chi-Che Tseng, Shu-Cheng Mai, Wei-Hsun Lin, Shung-Yi Wu, Bang-Ying Yu, Shu-Han Chen, Shih-Yen Lin, Jing-Jong Shyue, and Meng-Chyi Wu, “The Influence of As on the Morphologies and Optical Characteristics of GaSb/GaAs Quantum Dots”, IEEE J. Quantum Electronics, vol. 47, pp. 335-339, Mar. 2011.
    [40] C. Jiang, and Hiroyuki Sakaki, “Sb/As intermixing in self-assembled GaSb/GaAs type II quantum dot systems and control of their photoluminescence spectra”, Physica E, vol. 26, pp. 180–184, Nov. 2005.
    [41] M. Xiong1, M. Li, Y. Qiu, Y. Zhao1, L. Wang, and L.C. Zhao, “Investigation of antimony for arsenic exchange at the GaSb covered GaAs (001) surface”, Phys. Status Solidi B, vol. 247, pp. 303–307, Jan. 2010.
    [42] Kamil Gradkowski, Tomasz J. Ochalski, David P. Williams, Jun Tatebayashi, Arezou Khoshakhlagh, Ganesh Balakrishnan, Eoin P. O’Reilly, Guillaume Huyet, Larry R. Dawson, and Diana L. Huffaker, “Optical transition pathways in type-II Ga(As)Sb quantum dots”, J. Lumin., vol.129, pp. 456–460, Nov. 2008.
    [43] J. Tatebayashi, B. L Liang, David A. Bussian, Han Htoon, S. H Huang, G. Balakrishnan, V. Klimov, L. R. Dawson, and D. L. Huffaker, “Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well”, Nanotechnology, vol. 19, pp. 295704-1-295704-5, Jun. 2008.
    [44] D. Granados, and J. M. Garcia, “Electron localization by self-assembled GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 82, pp. 2401-2043, Jun. 2003.
    [45] R. Timm, A. Lenz, H. Eisele, L. Ivanova, M. Dähne, G. Balakrishnan, D. L. Huffaker, I. Farrer, and D. A. Ritchie, “Quantum ring formation and antimony segregation in GaSb/GaAs nanostructures”, J. Vac. Sci. Technol. B, vol. 26, pp. 1492-1503, Aug. 2008.
    [46] S. Kobayashi, C. Jiang, T. Kawazu, and H. Sakaki, “Self-Assembled Growth of GaSb Type II Quantum Ring Structures”, Jpn. J. Appl. Phys., vol. 43, pp. L662-L664, Apr. 2004.
    [47] Jong-Horng Dai, Jheng-Han Lee, and Si-Chen Lee, “Transition Mechanism of InAs Quantum Dot to Quantum Ring Revealed by Photoluminescence Spectra”, IEEE Photon. Technol. Lett., vol. 20, pp. 1372-1374, Apr. 2008.
    [48] Ta-Chun Lin, Chia-Hsien Lin, Hong-Shi Ling, Ying-Jhe Fu, Wen-Hao Chang, Sheng-Di Lin, and Chien-Ping Lee, “Impacts of structural asymmetry on the magnetic response of excitons and biexcitons in single self-assembled In(Ga)As quantum rings”, Phys. Rev. B, vol. 80, pp. 081304-1-081304-4, Aug. 2009.
    [49] Ming-Cheng Lo, Shyh-Jer Huang, Chien-Ping Lee, Sheng-Di Lin, and Shun-Tung Yen, “Discrete monolayer light emission from GaSb wetting layer in GaAs”, Appl. Phys. Lett., vol. 90, pp. 243102-1-243102-3, Jun. 2007.
    [50] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Carrier dynamics in type-II GaSb/GaAs quantum dots”, Phys. Rev. B, vol. 57, pp. 4635-4641, Jun. 1998.
    [51] M. Hayne, j. Maes, S. Bersier, V. V. Moshchalkov, A. Schliwa, L. Müller-Kirsch, C. Kapteyn, R. Heitz, and D. Bimberg, “Electron localization by self-assembled GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 82, pp. 4355-4357, Jun. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE