研究生: |
法漢特 Mahmoud Elsayed Farhat |
---|---|
論文名稱: |
有機太陽能電池性能提昇之研究:三種有機小分子,無鹵素溶劑,無毒溶液及多功能添加物之組合 Enhanced Performance of Organic Solar Cells via Various Processing Techniques: Functional Additive, Ternary Approach, Halogen-Free Solvents and Green Solvent Mixtures |
指導教授: |
朱治偉
Chih-Wei Chu 李志浩 Chih-Hao Lee |
口試委員: |
林建村
Lin, Jiann-T'suen 李志浩 Chih-Hao Lee 陳錦地 Chen, Chin-Ti 朱治偉 Chih-Wei Chu 陳方中 Fang-Chung Chen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 142 |
中文關鍵詞: | 有機太陽能電池 、無鹵素溶劑 、無毒溶液及 、添加物之組合 |
外文關鍵詞: | nanomorphology, green solvents, eco-freindly solvents |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Over the past decade, organic photovoltaics (OPVs) experienced significant development in performance reaching the threshold needed for commercialization [power conversion efficiencies (PCE) ˃10%]. Due to their light weight, flexibility and low cost, OPV technology is highly promising in terms of industrial aspects. Besides, OPVs have the advantage of being able to be fabricated on flexible substrates which facilitate the use of mass production techniques such ink jet printing or various roll-to-roll techniques. All these attractive advantages urged researchers worldwide to address challenges facing OPVs technology commercialization such as achieving high performances, replacing toxic processing solvents and upscaling with low costs. In this thesis, we introduced two main issues discussing processing techniques for high device performances and replacing toxic processing solvents with more eco-friendly counterparts.
Solvent additive with "dual functionality" has been introduced in small-molecule solar cells with significant enhancement in performance. The first function of this additive was that it controlled the morphology: the addition of 0.1% CP3MS (the additive) was sufficient to improve the film’s crystallinity and morphology. The second function was the spontaneous migration of the CP3MS molecules from the bulk to the interface between the active layer and the Al cathode, forming an ultrathin interlayer that acted as a buffer layer. PCE enhanced from 2.75% for devices without additives to 4.55% for devices containing 0.1% CP3MS.
As promising approach to widen the light absorption in organic solar cells, "ternary approach" has been introduced as technique to enhance device performance. We combined two small-molecule donors with acceptor to form all-small molecule ternary solar cells. Improvement in device performance mainly attributed to the complementary absorption of the two donors. After addition of the molecular donor as third component to form the ternary blend, the crystallinity and morphology of the active layer were enhanced. This means that the molecular donor in the ternary blend has effective role on both the absorption and the morphology. Devices produced PCE of 6.3% in ternary blend system relative to 4.55% in binary blend system.
As most of highest OPVs performances achieved using halogenated toxic solvents which are big obstacle toward industrialization and mass production. Replacing these toxic solvents with more eco-friendly solvents is urgent need for the upscaling OPVs. Toluene (Tol), a halogen-free solvent, was employed in the fabrication of molecular solar cells, achieving power conversion efficiency PCE higher than that obtained when using chlorinated counterparts. Halogen-free solvents have been also used for solvent vapor annealing (SVA) to control the morphology. We succeeded to achieve one of the highest PCE in molecular solar cells processed form halogen-free solvents (˃ 7%). The enhancement arose mainly from the improvement in the fill factor, due to morphological tailoring and favorable phase separation. PCE higher than 7% is one of the highest achieved so far when using halogen-free solvents for molecular solar cells processing
A new green solvent, cyclopentyl methyl ether (CPME), has been also introduced as successful alternative to replace toxic halogenated solvent for efficient molecular solar cells. Tol as co-solvent has been introduced with various amounts in CPME forming different green solvent mixtures. Tol incorporation as a co-solvent with CPME combined with thermal annealing effect led to PCE of greater than 8% which is the highest to date for molecular solar cells processed from green solvent mixtures. Morphology plays the key role in the performance improvement under the effects of co-solvent and thermal annealing.
Over the past decade, organic photovoltaics (OPVs) experienced significant development in performance reaching the threshold needed for commercialization [power conversion efficiencies (PCE) ˃10%]. Due to their light weight, flexibility and low cost, OPV technology is highly promising in terms of industrial aspects. Besides, OPVs have the advantage of being able to be fabricated on flexible substrates which facilitate the use of mass production techniques such ink jet printing or various roll-to-roll techniques. All these attractive advantages urged researchers worldwide to address challenges facing OPVs technology commercialization such as achieving high performances, replacing toxic processing solvents and upscaling with low costs. In this thesis, we introduced two main issues discussing processing techniques for high device performances and replacing toxic processing solvents with more eco-friendly counterparts.
Solvent additive with "dual functionality" has been introduced in small-molecule solar cells with significant enhancement in performance. The first function of this additive was that it controlled the morphology: the addition of 0.1% CP3MS (the additive) was sufficient to improve the film’s crystallinity and morphology. The second function was the spontaneous migration of the CP3MS molecules from the bulk to the interface between the active layer and the Al cathode, forming an ultrathin interlayer that acted as a buffer layer. PCE enhanced from 2.75% for devices without additives to 4.55% for devices containing 0.1% CP3MS.
As promising approach to widen the light absorption in organic solar cells, "ternary approach" has been introduced as technique to enhance device performance. We combined two small-molecule donors with acceptor to form all-small molecule ternary solar cells. Improvement in device performance mainly attributed to the complementary absorption of the two donors. After addition of the molecular donor as third component to form the ternary blend, the crystallinity and morphology of the active layer were enhanced. This means that the molecular donor in the ternary blend has effective role on both the absorption and the morphology. Devices produced PCE of 6.3% in ternary blend system relative to 4.55% in binary blend system.
As most of highest OPVs performances achieved using halogenated toxic solvents which are big obstacle toward industrialization and mass production. Replacing these toxic solvents with more eco-friendly solvents is urgent need for the upscaling OPVs. Toluene (Tol), a halogen-free solvent, was employed in the fabrication of molecular solar cells, achieving power conversion efficiency PCE higher than that obtained when using chlorinated counterparts. Halogen-free solvents have been also used for solvent vapor annealing (SVA) to control the morphology. We succeeded to achieve one of the highest PCE in molecular solar cells processed form halogen-free solvents (˃ 7%). The enhancement arose mainly from the improvement in the fill factor, due to morphological tailoring and favorable phase separation. PCE higher than 7% is one of the highest achieved so far when using halogen-free solvents for molecular solar cells processing
A new green solvent, cyclopentyl methyl ether (CPME), has been also introduced as successful alternative to replace toxic halogenated solvent for efficient molecular solar cells. Tol as co-solvent has been introduced with various amounts in CPME forming different green solvent mixtures. Tol incorporation as a co-solvent with CPME combined with thermal annealing effect led to PCE of greater than 8% which is the highest to date for molecular solar cells processed from green solvent mixtures. Morphology plays the key role in the performance improvement under the effects of co-solvent and thermal annealing.
1. R. E. H. Sims, H.-H. Rogner and K. Gregory, Energy Policy, 2003, 31, 1315-1326.
2. H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells, 2004, 83, 125-146.
3. B. Kippelen and J.-L. Bredas, Energy & Environmental Science, 2009, 2, 251-261.
4. C. J. Brabec, Solar Energy Materials and Solar Cells, 2004, 83, 273-292.
5. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Journal of the Chemical Society, Chemical Communications, 1977, DOI: 10.1039/C39770000578, 578-580.
6. C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
7. P. Peumans, A. Yakimov and S. R. Forrest, Journal of Applied Physics, 2003, 93, 3693-3723.
8. M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Andersson and O. Inganäs, Physical Review B, 2000, 61, 12957-12963.
9. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Applied Physics Letters, 1993, 62, 585-587.
10. G. Yu and A. J. Heeger, Journal of Applied Physics, 1995, 78, 4510-4515.
11. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature, 1995, 376, 498-500.
12. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789-1791.
13. P. Peumans, S. Uchida and S. R. Forrest, Nature, 2003, 425, 158-162.
14. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nature Materials, 2005, 4, 864-868.
15. B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat and T.-Q. Nguyen, Advanced Functional Materials, 2009, 19, 3063-3069.
16. F. C. Krebs, Solar Energy Materials and Solar Cells, 2009, 93, 394-412.
17. B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell and Y. Chen, Journal of the American Chemical Society, 2015, 137, 3886-3893.
18. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, Nature Photonics, 2015, 9, 174-179.
19. J. Xue, Polymer Reviews, 2010, 50, 411-419.
20. K. M. Pelzer and S. B. Darling, Molecular Systems Design & Engineering, 2016, DOI: 10.1039/C6ME00005C.
21. G. Li, R. Zhu and Y. Yang, Nature Photonics, 2012, 6, 153-161.
22. B. Walker, C. Kim and T.-Q. Nguyen, Chemistry of Materials, 2011, 23, 470-482.
23. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, Nature Materials, 2012, 11, 44-48.
24. A. Tamayo, T. Kent, M. Tantitiwat, M. A. Dante, J. Rogers and T.-Q. Nguyen, Energy & Environmental Science, 2009, 2, 1180-1186.
25. Y. Lin, Y. Li and X. Zhan, Chemical Society Reviews, 2012, 41, 4245-4272.
26. A. Mishra and P. Bäuerle, Angewandte Chemie International Edition, 2012, 51, 2020-2067.
27. P. P. Khlyabich, B. Burkhart, A. E. Rudenko and B. C. Thompson, Polymer, 2013, 54, 5267-5298.
28. H. Hoppe and N. S. Sariciftci, Journal of Materials Chemistry, 2006, 16, 45-61.
29. M. C. Scharber and N. S. Sariciftci, Progress in Polymer Science, 2013, 38, 1929-1940.
30. Y. Huang, E. J. Kramer, A. J. Heeger and G. C. Bazan, Chemical Reviews, 2014, 114, 7006-7043.
31. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao and L. Yu, Chemical Reviews, 2015, 115, 12666-12731.
32. W. L. Leong, G. C. Welch, J. Seifter, J. H. Seo, G. C. Bazan and A. J. Heeger, Advanced Energy Materials, 2013, 3, 356-363.
33. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Advanced Functional Materials, 2007, 17, 1636-1644.
34. K. Sun, Z. Xiao, E. Hanssen, M. F. G. Klein, H. H. Dam, M. Pfaff, D. Gerthsen, W. W. H. Wong and D. J. Jones, Journal of Materials Chemistry A, 2014, 2, 9048-9054.
35. B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng and Y. Chen, Journal of the American Chemical Society, 2014, 136, 15529-15532.
36. K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J. Subbiah, J. Ouyang, A. B. Holmes, W. W. H. Wong and D. J. Jones, Nature Communications, 2015, 6.
37. B. Walker, A. Tamayo, D. T. Duong, X.-D. Dang, C. Kim, J. Granstrom and T.-Q. Nguyen, Advanced Energy Materials, 2011, 1, 221-229.
38. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 2001, 78, 841-843.
39. J. J. van Franeker, M. Turbiez, W. Li, M. M. Wienk and R. A. J. Janssen, Nature Communications, 2015, 6.
40. P. Cheng and X. Zhan, Materials Horizons, 2015, 2, 462-485.
41. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan and A. J. Heeger, Journal of the American Chemical Society, 2008, 130, 3619-3623.
42. K. R. Graham, J. Mei, R. Stalder, J. W. Shim, H. Cheun, F. Steffy, F. So, B. Kippelen and J. R. Reynolds, ACS Applied Materials & Interfaces, 2011, 3, 1210-1215.
43. K. R. Graham, P. M. Wieruszewski, R. Stalder, M. J. Hartel, J. Mei, F. So and J. R. Reynolds, Advanced Functional Materials, 2012, 22, 4801-4813.
44. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature Materials, 2007, 6, 497-500.
45. M. E. Farahat, H.-Y. Wei, M. A. Ibrahem, K. M. Boopathi, K.-H. Wei and C.-W. Chu, RSC Advances, 2014, 4, 9401-9411.
46. T. Ameri, N. Li and C. J. Brabec, Energy & Environmental Science, 2013, 6, 2390-2413.
47. J. You, L. Dou, Z. Hong, G. Li and Y. Yang, Progress in Polymer Science, 2013, 38, 1909-1928.
48. S.-Y. Chang, H.-C. Liao, Y.-T. Shao, Y.-M. Sung, S.-H. Hsu, C.-C. Ho, W.-F. Su and Y.-F. Chen, Journal of Materials Chemistry A, 2013, 1, 2447-2452.
49. T. Ameri, P. Khoram, T. Heumuller, D. Baran, F. Machui, A. Troeger, V. Sgobba, D. M. Guldi, M. Halik, S. Rathgeber, U. Scherf and C. J. Brabec, Journal of Materials Chemistry A, 2014, 2, 19461-19472.
50. S. Jeong, Y. Kwon, B.-D. Choi, H. Ade and Y. S. Han, Applied Physics Letters, 2010, 96, -.
51. S. Jeong, Y. Kwon, B.-D. Choi, G. Kwak and Y. S. Han, Macromolecular Chemistry and Physics, 2010, 211, 2474-2479.
52. A. Sharenko, N. D. Treat, J. A. Love, M. F. Toney, N. Stingelin and T.-Q. Nguyen, Journal of Materials Chemistry A, 2014, 2, 15717-15721.
53. Y. Zhang, D. Deng, K. Lu, J. Zhang, B. Xia, Y. Zhao, J. Fang and Z. Wei, Advanced Materials, 2015, 27, 1071-1076.
54. J. Zhang, Y. Zhang, J. Fang, K. Lu, Z. Wang, W. Ma and Z. Wei, Journal of the American Chemical Society, 2015, DOI: 10.1021/jacs.5b03449.
55. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf and C. J. Brabec, Advanced Functional Materials, 2005, 15, 1193-1196.
56. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials, 2005, 15, 1617-1622.
57. Y. Kim, H. R. Yeom, J. Y. Kim and C. Yang, Energy & Environmental Science, 2013, 6, 1909-1916.
58. H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling and W.-F. Su, Materials Today, 2013, 16, 326-336.
59. F.-C. Chen and S.-C. Chien, Journal of Materials Chemistry, 2009, 19, 6865-6869.
60. J. W. Jung, J. W. Jo and W. H. Jo, Advanced Materials, 2011, 23, 1782-1787.
61. Q. Wei, T. Nishizawa, K. Tajima and K. Hashimoto, Advanced Materials, 2008, 20, 2211-2216.
62. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nature Photonics, 2009, 3, 297-302.
63. H. Tang, G. Lu, L. Li, J. Li, Y. Wang and X. Yang, Journal of Materials Chemistry, 2010, 20, 683-688.
64. L. Lu, M. A. Kelly, W. You and L. Yu, Nat Photon, 2015, 9, 491-500.
65. L. Lu, T. Xu, W. Chen, E. S. Landry and L. Yu, Nature Photonics, 2014, 8, 716-722.
66. P. Cheng, Y. Li and X. Zhan, Energy & Environmental Science, 2014, 7, 2005-2011.
67. S. Honda, T. Nogami, H. Ohkita, H. Benten and S. Ito, ACS Applied Materials & Interfaces, 2009, 1, 804-810.
68. T. Ameri, P. Khoram, J. Min and C. J. Brabec, Advanced Materials, 2013, 25, 4245-4266.
69. R. Søndergaard, M. Helgesen, M. Jørgensen and F. C. Krebs, Advanced Energy Materials, 2011, 1, 68-71.
70. S. Zhang, L. Ye, H. Zhang and J. Hou, Materials Today, DOI: 10.1016/j.mattod.2016.02.019.
71. C. Capello, U. Fischer and K. Hungerbuhler, Green Chemistry, 2007, 9, 927-934.
72. W. Zhao, L. Ye, S. Zhang, M. Sun and J. Hou, Journal of Materials Chemistry A, 2015, 3, 12723-12729.
73. C. Sprau, F. Buss, M. Wagner, D. Landerer, M. Koppitz, A. Schulz, D. Bahro, W. Schabel, P. Scharfer and A. Colsmann, Energy & Environmental Science, 2015, 8, 2744-2752.
74. X. Guo, M. Zhang, C. Cui, J. Hou and Y. Li, ACS Applied Materials & Interfaces, 2014, 6, 8190-8198.
75. Y. Chen, S. Zhang, Y. Wu and J. Hou, Advanced Materials, 2014, 26, 2744-2749.
76. Y. Deng, W. Li, L. Liu, H. Tian, Z. Xie, Y. Geng and F. Wang, Energy & Environmental Science, 2015, 8, 585-591.
77. J. Griffin, A. J. Pearson, N. W. Scarratt, T. Wang, A. D. F. Dunbar, H. Yi, A. Iraqi, A. R. Buckley and D. G. Lidzey, Organic Electronics, 2015, 21, 216-222.
78. C.-C. Chueh, K. Yao, H.-L. Yip, C.-Y. Chang, Y.-X. Xu, K.-S. Chen, C.-Z. Li, P. Liu, F. Huang, Y. Chen, W.-C. Chen and A. K. Y. Jen, Energy & Environmental Science, 2013, 6, 3241-3248.
79. J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and H. Yan, Nature Energy, 2016, 1, 15027.
80. S. Venkatesan, Q. Chen, E. C. Ngo, N. Adhikari, K. Nelson, A. Dubey, J. Sun, V. Bommisetty, C. Zhang, D. Galipeau and Q. Qiao, Energy Technology, 2014, 2, 269-274.
81. H. Zhang, H. Yao, W. Zhao, L. Ye and J. Hou, Advanced Energy Materials, 2016, 6, n/a-n/a.
82. I. Burgués-Ceballos, F. Machui, J. Min, T. Ameri, M. M. Voigt, Y. N. Luponosov, S. A. Ponomarenko, P. D. Lacharmoise, M. Campoy-Quiles and C. J. Brabec, Advanced Functional Materials, 2014, 24, 1449-1457.
83. X. Chen, X. Liu, M. A. Burgers, Y. Huang and G. C. Bazan, Angewandte Chemie International Edition, 2014, 53, 14378-14381.
84. M. Singh, R. Kurchania, J. A. Mikroyannidis, S. S. Sharma and G. D. Sharma, Journal of Materials Chemistry A, 2013, 1, 2297-2306.
85. M. E. Farahat, C.-S. Tsao, Y.-C. Huang, S.-H. Chang, W. Budiawan, C.-G. Wu and C. W. Chu, Journal of Materials Chemistry A, 2016, 4, 7341-7351.
86. J. H. Hildebrand and R. L. Scott, The Journal of Chemical Physics, 1952, 20, 1520-1521.
87. C. M. Hansen, Journal, 2007.
88. T. S. van der Poll, J. A. Love, T.-Q. Nguyen and G. C. Bazan, Advanced Materials, 2012, 24, 3646-3649.
89. B. Lim, J. Jo, S.-I. Na, J. Kim, S.-S. Kim and D.-Y. Kim, Journal of Materials Chemistry, 2010, 20, 10919-10923.
90. S. Yamakawa, K. Tajima and K. Hashimoto, Organic Electronics, 2009, 10, 511-514.
91. A. B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent and T.-Q. Nguyen, Applied Physics Letters, 2009, 94, 103301.
92. A. J. Heeger, Advanced Materials, 2014, 26, 10-28.
93. L. Yang, L. Yan and W. You, The Journal of Physical Chemistry Letters, 2013, 4, 1802-1810.
94. F. Goubard and G. Wantz, Polymer International, 2014, 63, 1362-1367.
95. T. Ameri, T. Heumuller, J. Min, N. Li, G. Matt, U. Scherf and C. J. Brabec, Energy & Environmental Science, 2013, 6, 1796-1801.
96. Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li and Y. Yang, Nature Photonics, 2015, 9, 190-198.
97. T.-Y. Huang, D. Patra, Y.-S. Hsiao, S. H. Chang, C.-G. Wu, K.-C. Ho and C.-W. Chu, Journal of Materials Chemistry A, 2015, 3, 10512-10518.
98. S.-J. Ko, W. Lee, H. Choi, B. Walker, S. Yum, S. Kim, T. J. Shin, H. Y. Woo and J. Y. Kim, Advanced Energy Materials, 2015, 5.
99. P. P. Khlyabich, B. Burkhart and B. C. Thompson, Journal of the American Chemical Society, 2011, 133, 14534-14537.
100. H. Cha, D. S. Chung, S. Y. Bae, M.-J. Lee, T. K. An, J. Hwang, K. H. Kim, Y.-H. Kim, D. H. Choi and C. E. Park, Advanced Functional Materials, 2013, 23, 1556-1565.
101. J.-H. Huang, M. Velusamy, K.-C. Ho, J.-T. Lin and C.-W. Chu, Journal of Materials Chemistry, 2010, 20, 2820-2825.
102. T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel and J. Roncali, Journal of Materials Chemistry, 2009, 19, 2298-2300.
103. P. P. Khlyabich, B. Burkhart and B. C. Thompson, Journal of the American Chemical Society, 2012, 134, 9074-9077.
104. L. Yang, H. Zhou, S. C. Price and W. You, Journal of the American Chemical Society, 2012, 134, 5432-5435.
105. G. G. Malliaras, J. R. Salem, P. J. Brock and C. Scott, Physical Review B, 1998, 58, R13411-R13414.
106. R. B. Zerdan, N. T. Shewmon, Y. Zhu, J. P. Mudrick, K. J. Chesney, J. Xue and R. K. Castellano, Advanced Functional Materials, 2014, 24, 5993-6004.
107. P. P. Khlyabich, A. E. Rudenko, R. A. Street and B. C. Thompson, ACS Applied Materials & Interfaces, 2014, 6, 9913-9919.
108. T. Ameri, J. Min, N. Li, F. Machui, D. Baran, M. Forster, K. J. Schottler, D. Dolfen, U. Scherf and C. J. Brabec, Advanced Energy Materials, 2012, 2, 1198-1202.
109. Z. Guan, R. Wu, Y. Zang and J. Yu, Thin Solid Films, 2013, 539, 278-283.
110. Y. J. Cho, J. Y. Lee, B. D. Chin and S. R. Forrest, Organic Electronics, 2013, 14, 1081-1085.
111. N. A. Nismy, K. D. G. I. Jayawardena, A. A. D. T. Adikaari and S. R. P. Silva, Advanced Materials, 2011, 23, 3796-3800.
112. J. Lee, M. H. Yun, J. Kim, J. Y. Kim and C. Yang, Macromolecular Rapid Communications, 2012, 33, 140-145.
113. W. Zhou, J. Shi, L. Lv, L. Chen and Y. Chen, Physical Chemistry Chemical Physics, 2015, 17, 387-397.
114. B. E. Warren, Physical Review, 1941, 59, 693-698.
115. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia and S. P. Williams, Advanced Materials, 2010, 22, 3839-3856.
116. P. G. Jessop, Green Chemistry, 2011, 13, 1391-1398.
117. G. Susanna, L. Salamandra, C. Ciceroni, F. Mura, T. M. Brown, A. Reale, M. Rossi, A. Di Carlo and F. Brunetti, Solar Energy Materials and Solar Cells, 2015, 134, 194-198.
118. C. Sprau, F. Buss, M. Wagner, D. Landerer, M. Koppitz, A. Schulz, D. Bahro, W. Schabel, P. Scharfer and A. Colsmann, Energy & Environmental Science, 2015, DOI: 10.1039/C5EE01917F.
119. C.-D. Park, T. A. Fleetham, J. Li and B. D. Vogt, Organic Electronics, 2011, 12, 1465-1470.
120. B. Schmidt-Hansberg, M. Sanyal, N. Grossiord, Y. Galagan, M. Baunach, M. F. G. Klein, A. Colsmann, P. Scharfer, U. Lemmer, H. Dosch, J. Michels, E. Barrena and W. Schabel, Solar Energy Materials and Solar Cells, 2012, 96, 195-201.
121. F. Machui, S. Langner, X. Zhu, S. Abbott and C. J. Brabec, Solar Energy Materials and Solar Cells, 2012, 100, 138-146.
122. C. D. Wessendorf, G. L. Schulz, A. Mishra, P. Kar, I. Ata, M. Weidelener, M. Urdanpilleta, J. Hanisch, E. Mena-Osteritz, M. Lindén, E. Ahlswede and P. Bäuerle, Advanced Energy Materials, 2014, 4.
123. H. C. Liao, C. S. Tsao, Y. C. Huang, M. H. Jao, K. Y. Tien, C. M. Chuang, C. Y. Chen, C. J. Su, U. S. Jeng, Y. F. Chen and W. F. Su, RSC Advances, 2014, 4, 6246-6253.
124. G. De Luca, E. Treossi, A. Liscio, J. M. Mativetsky, L. M. Scolaro, V. Palermo and P. Samori, Journal of Materials Chemistry, 2010, 20, 2493-2498.
125. J. D. Zimmerman, X. Xiao, C. K. Renshaw, S. Wang, V. V. Diev, M. E. Thompson and S. R. Forrest, Nano Letters, 2012, 12, 4366-4371.
126. Y. Liu, C.-C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li and Y. Yang, Scientific Reports, 2013, 3.
127. A. R. b. Mohd Yusoff, D. Kim, F. K. Schneider, W. J. da Silva and J. Jang, Energy & Environmental Science, 2015, 8, 1523-1537.
128. A. Viterisi, F. Gispert-Guirado, J. W. Ryan and E. Palomares, Journal of Materials Chemistry, 2012, 22, 15175-15182.
129. F. Liu, Y. Gu, X. Shen, S. Ferdous, H.-W. Wang and T. P. Russell, Progress in Polymer Science, 2013, 38, 1990-2052.
130. A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T.-Q. Nguyen, G. C. Bazan and A. J. Heeger, Advanced Energy Materials, 2014, 4.
131. Y.-W. Su, C.-M. Liu, J.-M. Jiang, C.-S. Tsao, H.-C. Cha, U. S. Jeng, H.-L. Chen and K.-H. Wei, The Journal of Physical Chemistry C, 2015, 119, 3408-3417.
132. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, Advanced Materials, 2011, 23, 4636-4643.
133. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, Advanced Materials, 2007, 19, 1551-1566.
134. Z. B. Henson, P. Zalar, X. Chen, G. C. Welch, T.-Q. Nguyen and G. C. Bazan, Journal of Materials Chemistry A, 2013, 1, 11117-11120.
135. D. Liu, Z. Wang, S. Zhang, Z. Zheng, B. Yang, W. Ma and J. Hou, RSC Advances, 2015, 5, 69567-69572.
136. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street and Y. Yang, Advanced Materials, 2013, 25, 6642-6671.
137. L. Ye, S. Zhang, W. Ma, B. Fan, X. Guo, Y. Huang, H. Ade and J. Hou, Advanced Materials, 2012, 24, 6335-6341.
138. J. G. Tait, T. Merckx, W. Li, C. Wong, R. Gehlhaar, D. Cheyns, M. Turbiez and P. Heremans, Advanced Functional Materials, 2015, 25, 3393-3398.
139. Y. Yao, J. Hou, Z. Xu, G. Li and Y. Yang, Advanced Functional Materials, 2008, 18, 1783-1789.
140. P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Y. Mayorova, A. E. Goryachev, A. S. Peregudov, R. N. Lyubovskaya, G. Gobsch, N. S. Sariciftci and V. F. Razumov, Advanced Functional Materials, 2009, 19, 779-788.
141. J.-H. Kim, J. H. Park, J. H. Lee, J. S. Kim, M. Sim, C. Shim and K. Cho, Journal of Materials Chemistry, 2010, 20, 7398-7405.
142. K. Watanabe, N. Yamagiwa and Y. Torisawa, Organic Process Research & Development, 2007, 11, 251-258.
143. P. G. Jessop, D. A. Jessop, D. Fu and L. Phan, Green Chemistry, 2012, 14, 1245-1259.
144. Y. Chen, Y. Cui, S. Zhang and J. Hou, Polymer Chemistry, 2015, 6, 4089-4095.
145. Y. Liu, C.-C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li and Y. Yang, Scientific Reports, 2013, 3, 3356.
146. J. A. Love, C. M. Proctor, J. Liu, C. J. Takacs, A. Sharenko, T. S. van der Poll, A. J. Heeger, G. C. Bazan and T.-Q. Nguyen, Advanced Functional Materials, 2013, 23, 5019-5026.
147. N. Cho, H.-L. Yip and A. K.-Y. Jen, Applied Physics Letters, 2013, 102, 233903.
148. W. Liu, S. Liu, N. K. Zawacka, T. R. Andersen, P. Cheng, L. Fu, M. Chen, W. Fu, E. Bundgaard, M. Jorgensen, X. Zhan, F. C. Krebs and H. Chen, Journal of Materials Chemistry A, 2014, 2, 19809-19814.