簡易檢索 / 詳目顯示

研究生: 永同興
Yung, Tung-Hsing
論文名稱: 水熱法製備鐵酸鉍奈米結構於鎳酸鑭/氧化鋁基板
Hydrothermal growth of BiFeO3 nanostructures on LaNiO3/Al2O3 substrates
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 林鶴南
梁春昇
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 水熱法鐵酸鉍奈米結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用水熱合成法(hydrothermal synthesis method),以硝酸鉍(Bi(NO3)3•5H2O)與硝酸鐵(Fe(NO3)3•9H2O)作為前趨物來源,配合氫氧化鉀(KOH)aq為礦化劑,製備鐵酸鉍(BiFeO3)奈米結構於具備LaNiO3緩衝層的Al2O3基板上,探討其在不同反應時間下之結構與性質差異,以及生成過程中的成核成長機制。
    於X光繞射圖譜(XRD)下可清楚地發現,BiFeO3相會遵循著底下LaNiO3緩衝層的優選方向(100)與(200)做磊晶成長。隨著時間演進,此一現象越趨明顯。由掃描式電子顯微鏡(SEM)圖可以觀察到BiFeO3在水熱反應時間6至24小時後之形貌變化,由初始零星數量的奈米立方體(nanocube)出現在LaNiO3層表面,逐漸地過渡到為數眾多且體積增大的nanocubes幾乎覆蓋著LaNiO3層。為進一步確認nanocube的微晶體結構與元素成分,分別進行了穿透式電子顯微鏡(TEM)與能量散佈光譜儀(EDS)檢測,判讀結果符合預期理想。此外,更進一步地運用了X光光電子能譜儀(XPS)以鑑定nanocubes中所包含之元素成分,並且分析其中元素之化學態。BiFeO3在LaNiO3層上成長的演變,可以利用溶解-再析出(dissolution-reprecipitation)與島狀成長(island-growth)理論來作出解釋。


    目錄 摘要...................................................I 誌謝..................................................II 目錄..................................................IV 表目錄………………………………………………………..…VIII 圖目錄……………………………………………………..………IX 第一章序論………………………………………………………….1 1.1 簡介……………………………………....…………………1 1.2 研究動機…………...………………….……………………2 第二章 文獻回顧……………………………………………………4 2.1 複鐵式材料簡介…………………………………………..4 2.1.1 鐵電性質與結構………………………………………4 2.1.2 磁電效應……………………………………………..5 2.1.3 複鐵式材料的種類…………………………………..6 2.2 鐵酸鉍的特性………………..…………………………..8 2.2.1 晶體結構………………………………………..…..8 2.2.2 鐵電性…………………………………………………9 2.2.3 磁性………………………...………………………10 2.2.4 奈米級概述……………….…………….………….11 2.2.5 應用發展……………………….……………………12 2.3 水熱法……………………………………….…………..12 2.3.1 水熱法簡介………………………………………….12 2.3.2 礦化劑的選擇…………………….………….………….13 2.3.3 水熱法結晶成長機制………………..………………….14 第三章 實驗方法……………………………….………………..16 3.1 實驗步驟……………………………………….……………16 3.1.1 LaNiO3薄膜的製備…………………………….....16 3.1.1.1 基板的準備…………………………………….16 3.1.1.2 RF磁控濺鍍系統的操作與設定…….……..…………16 3.1.2 於LaNiO3層上製備BiFeO3奈米結構…………….…..…17 3.1.2.1 水熱法溶液的配製……………….……………..17 3.1.2.2 水熱合成法的進行…………….……………………..17 3.2 實驗量測…………………………………….………………18 3.2.1 晶體結構…………………………………………….18 3.2.2 表面形貌…………………………………….……..18 3.2.3 元素成分分析……………………………………….19 3.2.4 化學鍵結分析…………………….…….………….19 3.2.5 微細結構…………………………….…….……….19 3.2.6 M-H 磁滯曲線…………………….…………………20 3.2.7 壓電性質…………………………………………….20 第四章 實驗結果與討論……………………….………...…….22 4.1 LaNiO3薄膜之探討………………………………….……..22 4.1.1 利用RF磁控濺鍍系統製備LaNiO3薄膜….…………22 4.1.1.1 基板溫度的改變……………………….………23 4.1.1.2 Ar / O2流量比的改變…………………………23 4.1.2 LaNiO3薄膜表面與斷面觀察……….………………24 4.2 BiFeO3粉末之探討…………………….…….…………….24 4.2.1 BiFeO3粉末晶體結構分析………………….……………24 4.2.2 BiFeO3粉末表面形貌觀察…………….…………………25 4.3 於LaNiO3層上製備BiFeO3奈米結構之探討…….…………25 4.3.1 BiFeO3奈米結構在LaNiO3層上之結構變化……….25 4.3.2 BiFeO3奈米結構在LaNiO3層上之表面觀察….……26 4.3.3 BiFeO3奈米結構之元素成分判定……….…………27 4.3.4 BiFeO3奈米結構之化學鍵結判定………………….27 4.3.5 BiFeO3奈米結構之晶體結構判定………….………29 4.3.6 BiFeO3奈米結構成長機制之探討….………………30 4.3.7 BiFeO3奈米結構在LaNiO3層上之磁性量測……….32 4.3.8 BiFeO3奈米結構在LaNiO3層上之壓電性量測….…33 第五章 結論…………………………………………………….…36 第六章 參考文獻………………………………………….………38 表目錄 表 3-1:參數變換相對應的鍍製條件……………………….….45 表 3-2:Ar / O2流量為7:3相對應的濺鍍條件……………...45 表 3-3:Ar / O2流量為6:4相對應的濺鍍條件……………….45 表 3-4:水熱反應之起始原料……………………………………46 圖目錄 圖2.1.1:鈦酸鋇(BaTiO3)鈣鈦礦結構………………………….47 圖2.1.2:典型電滯曲線圖……………………………………….47 圖2.2.1:菱形晶單位組成晶胞………………………………….48 圖2.2.2:六方晶單位組成晶胞………………………………….48 圖2.2.3:G-type反鐵磁特性示意圖…………………………….49 圖2.2.4:弱鐵磁性示意圖……………………………………….49 圖2.2.5:BFO於磁性的尺寸效應示意圖…………………………50 圖2.3.1:原位生成機制示意圖………………………………….51 圖2.3.2:溶解-析出示意圖………………………….………….51 圖2.3.3:溶質濃度與時間關係圖……………………………….51 圖3.1.1:壓力釜裝置示意圖…………………………….………52 圖3.1.2:BFO / LNO / Al2O3異質結構示意圖…………………52 圖4.1.1:空白Al2O3基板XRD結果圖…………………………….53 圖4.1.2:參數變換相對應的XRD結果圖………………..…....53 圖4.1.3:Ar / O2流量比7:3於不同基板溫度XRD結果圖…….54 圖4.1.4:Ar / O2流量比6:4於不同基板溫度XRD結果圖…….54 圖4.1.5:LNO薄膜SEM,(a)俯視圖,(b)截面圖…………….…55 圖4.2.1:水熱法粉末於不同持溫時間XRD結果圖…..…………56 圖4.2.2:水熱法合成,(a)6 hr,(b)12 hr,(c)24 hr BFO粉末SEM圖…..................................................57 圖4.3.1:LNO / Al2O3經歷不同水熱時間XRD結果圖………….58 圖4.3.2:LNO / Al2O3經水熱時間,(a)6 hr,(b)12 hr,(c)24 hr SEM結果圖……………………….…………………………………59 圖4.3.3:水熱法下Bi2O3顆粒SEM結果圖….……………………60 圖4.3.4:水熱法12hr下BFO奈米顆粒EDS圖(SEM)……….…….61 圖4.3.5:水熱法12hr下BFO奈米顆粒EDS圖(TEM)……….…….61 圖4.3.6:Pt-4d軌域XPS光譜圖……………………….………..62 圖4.3.7:BFO / LNO / Al2O3 Bi-4f軌域XPS光譜圖………….62 圖4.3.8:BFO / LNO / Al2O3 O-1s軌域XPS光譜圖……………63 圖4.3.9:BFO / LNO / Al2O3,(a)6 hr,(b)12 hr,(c)24 hr Fe-2p軌域XPS光譜圖………………………………………………….64 圖4.3.10:BFO奈米結構於不同反應時間下Fe2+、Fe3+比例變化....................................................65 圖4.3.11:BFO奈米顆粒,(a)TEM影像圖,(b)相對應SAED圖…66 圖4.3.12:BFO奈米結構之M-H圖,(a)6 hr,(b)12 hr,(c)24 hr……................................................67 圖4.3.13:BFO / LNO / Al2O3於測量PFM之構造示意圖……..68 圖4.3.14:BFO / LNO / Al2O3 (低倍率,無外加場,In-plane),(a)表面形貌圖,(b)壓電訊號圖………………………………..69 圖4.3.15:BFO / LNO / Al2O3 (高倍率,無外加場,Out-plane),(a)表面形貌圖,(b)壓電訊號圖…………………………..……69 圖4.3.16:BFO / LNO / Al2O3 (高倍率,無外加場,In-plane),(a)表面形貌圖,(b)壓電訊號圖………………….…………….70 圖4.3.17:BFO / LNO / Al2O3 (高倍率,外加場,Out-plane),(a)表面形貌圖,(b)壓電訊號圖…………………………………….70 圖4.3.18:BFO / LNO / Al2O3 (高倍率,外加場,In-plane),(a)表面形貌圖,(b)壓電訊號圖…………………………………….71

    1. A. J. Moulson and J. M. Herbert, “Electroceramics : Materials, Properties, Applications”, Chapman & Hall, London, UK, 1990
    2. L. L. Hench and J. K. West, “Principles of Electronic Ceramics”, John Wiley & Sons, New York, 1990
    3. B. Jaffe, W. Cook, and H. Jaffe, “Piezoelectric Ceramics”, Academic Press, Inc., New York, 1971
    4. L. W. Martin, S.P. Crane, Y.H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke and R. Ramesh,“Multiferroics and magnetoelectrics : thin films and nanostructures”, J. Phys.: Condens. Matter, 20, (2008), 434220
    5. G. Catalan and J. F. Scott, “Physics and Applications of Bismuth Ferrite”, Adv. Mater., 21, (2009), 2463-2485
    6. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures”, Science, 299, (2003), 1719-1722
    7. S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen and N. B. Ming, “Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure”, Appl. Phys. Lett., 87, (2005), 262907
    8. D. Rout, K.S. Moon and S.J.L. Kang, “Temperature-dependent Raman scattering studies of polycrystalline BiFeO3 bulk ceramics”, J. Raman Spectrosc., 40, (2009), 618-626
    9. H. Bea, M. Bibes, A. Barthelemy, et al, “Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films”, Appl. Phys. Lett., 87 (2005), 072508
    10. Y. H. Lee, J. M. Wu, Y. L. Chueh and L. J. Chou, “Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current”, Appl. Phys. Lett., 87, (2005), 172901
    11. V. Shelke, V.N. Harshan, S. Kotru and A. Gupta, “Effect of kinetic growth parameters on leakage current and ferroelectric behavior of BiFeO3 thin films”, J. Appl. Phys., 106, (2009), 104114
    12. S. W. Chen, C. C. Lee, M. T. Chen and J. M. Wu, “Synthesis of BiFeO3/ZnO core-shell hetero-structures using ZnO nanorod positive templates”, Nanotechnology, 22, (2011), 115605
    13. Y. Wang, G. Xu, Z. H. Ren, X. Wei, W. J. Weng, P. Du, G. Shen and G. R. Han, “Mineralizer-assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles”, J. Am. Ceram. Soc., 90, (2007), 2615-2617
    14. U. A. Joshi, J. S. Jang, P. H. Borse and J. S. Lee, “Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications”, Appl. Phys. Lett., 92, (2008), 242106
    15. Y. M. Chiang, D. P. Birnie and W. D. Kingery, “Physical Ceramics, Principles for Ceramics Science and Engineering”, John Wiley & Sons, 1997
    16. M. Fiebig, “Revival of the magnetoelectric effect”, J. Phys. D:Appl. Phys., 38, (2005), R123-R152
    17. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, “Multiferroic magnetoelectric composites:Historical perspective, status, and future directions”, J. Appl. Phys., 103, (2008), 031101
    18. V. J. Folen, G. T. Rado and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3”, Phys. Rev. Lett., 6, (1961), 607
    19. G. T. Rado and V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains”, Phys. Rev. Lett., 7, (1961), 310
    20. E. Ascher, H. Rieder, H. Schmid and H. Stossel, “Some Properties of Ferromagnetoelectric Nickel Iodine Boracite, Ni3B7O13I”, J. Appl. Phys., 37, (1966), 1404
    21. G. A. Smolensky, A. I. Agranovskaya, and V. A. Isupov, “New Ferroelectrics of Complex Compound”, Sov. Phys. Solid State, 1, (1959), 149
    22. G. A. Smolensky, V. A. Isupov, N. N. Krainik and A. I. Agranovskaya,“Concerning the Coexistance of the Ferroelectric and Ferrimagnetic States”, Isv. Akad. Nauk SSSR, Ser Fiz., 25, (1961), 1333
    23. W. Brixel, J. P. Rivera, A. Steiner, and H. Schmid, “Magnetic Field Induced Magnetoelectric Effect in the Perovskite Pb2CoWo6 and Pb2FeTaO6”, Ferroelectrics, 79, (1988), 201
    24. D. N. Astrov, B. I. Alshin, Y. Y. Tomashpolski and Y. N. Venevtsev, “Spontaneous Magnetoelectric Effect”, Sov. Phys. JETP, 28, (1969), 1123
    25. A. M. dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, and C. N. R. Rao, “Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3”, Solid State Commun., 122, (2002), 49
    26. T. Atou, H. Chiba, K. ohoyama, Y. Yamaguchi and Y. Syono, “ Structure determination of ferromagnetic perovskite BiMnO3”, J. Solid State Chem., 145, (1999), 639
    27. R. Seshadri and N. A. Hill, “Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3”, Chem. Mater., 13, (2001), 2892
    28. T. Shishidou, N. Mikamo, Y. Uratani, F. Ishii and T. Oguchi, “ First-principles study on the electronic structure of bismuth transition-metal oxides”, J. Phys.: Condens. Matter, 16, (2004), S5677
    29. H. L. Yakel, W. C. Koehler, E. F. Bertaut and E. F. Forrat, “On the Crystal Structure of the Manganese (111) Trioxides of Heavy Lanthanides and Yttrium”, Acta Crystallogr., 16, (1963), 957
    30. W. Sikora, V. N. Syromyatnikov, “Symmetry analysis of magnetic structure in hexagonal manganites LMnO3 (L = Er, Ho, Lu, Sc, Tm, Y)”, J. Magn. Magn. Mater, 60, (1986), 199
    31. T. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Tobbens and J. A. Mydosh, “Development of the high-temperature phase of hexagonal manganites”, Phys. Rev. B, 69, (2004), 134108
    32. E. F. Bertaut, G. Buisson, A. Durif, A. Mareschal, M. C. Montmory and S. Quezel-Ambrunaz, “Combinaisons des oxydes de terres rares avec les oxydes des metaux de transition”, Bull. Soc. Chim. Fr., 4, (1965), 1132
    33. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S. W. Cheong, “ Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature, 429, (2004), 392
    34. I. Kagomiya, K. Kohn and T. Uchiyama, “Structure and ferroelectricity of RMn2O5”, Ferroelectrics, 280, (2002), 297
    35. J. M. Moreau, C. Michel, R. Gerson, W. J. James,“Ferroelectric BiFeO3 X-ray and neutron diffraction study”, J. Phys. Chem. Solids, 32, (1971), 1315
    36. F. Kubel and H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3”, Acta Cryst. B, 46, (1990), 698
    37. J. D. Bucci, B. K. Robertson and W. J. James, “Precision determination of lattice parameters and coefficients of thermal expansion of BiFeO3”, J. Appl. Cryst., 5, (1972), 187
    38. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high field electron spin resonance:Cycloidal to homogeneous spin order”, Phys. Rev. B, 69, (2004), 064114
    39. V. M. Goldschmidt, “The laws of crystal chemistry”, Naturwissenschaften, 14, (1926), 477
    40. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Cryst. A, 32, (1976), 751
    41. F. Zavaliche, S. Y. Yang, T. Zhao, Y. H. Chu, M. P. Cruz, C. B. Eom and R. Ramesh, “Multiferroic BiFeO3 films: domain structure and polarization dynamics”, Phase Transitions, 79, (2006), 991
    42. J. R. Teague, R. Gerson and W. J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun., 8, (1970), 1073
    43. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco and S. Fusil, “Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals”, Phys. Rev. B, 76, (2007), 024116
    44. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in BiFeO3”, Phys. Rev. B, 74, (2006), 224412
    45. I. Sosnowska, T. Peterlin-Neumaier and E. Steichele, “Spiral magnetic ordering in bismuth ferrite”, J. Phys. C., 15, (1982), 4835
    46. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, “Temperature-dependence of the crystal and magnetic-structures of BiFeO3”, J. Phys. C:Solid State Phys., 13, (1980), 1931
    47. T. Moriya, “Anisotropic Superexchange interaction and weak ferromagnetism”, Phys. Rev., 120, (1960), 91
    48. C. Ederer and N. A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phys. Rev. B, 71, (2005), 060401
    49. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh and S.S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles”, Nano Lett., 7, (2007), 766
    50. F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. M. Liu, “Preparation and photoabsorption characterization of BiFeO3 nanowires”, Appl. Phys. Lett., 89, (2006), 102506
    51. R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, N. Das, A. Sen, A. K. Tyagi, M. Sivakumar, T. Takami and H. Ikuta, “ Particle size dependence of magnetization and phase transition near T-N in multiferroic BiFeO3”, J. Appl. Phys., 100, (2006), 033908
    52. J. T. Richardson and W. O. Milligan, “Magnetic properties of colloidal nickelous oxide”, Phys. Rev., 102, (1956), 1289
    53. X. Y. Zhang, C. W. Lai, X. Zhao, D. Y. Wang and J. Y. Dai, “Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays”, Appl. Phys. Lett., 87, (2005), 143102
    54. D. Lee, M. G. Kim, S. Ryu and H. M. Jang, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett., 86, (2005), 222903
    55. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Cheng, J. M. Liu and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett., 84, (2004), 1731
    56. K. F. E. Schafthaul, Gelehrte Anzeigen Bayer, Akad, 20, (1845), 557
    57. M. Yoshimura, and H. Suda, “Hydrothermal Processing of Hydroxyapatite: Past, Present, and Future”, CRC Press, Inc, (1994), 45
    58. R. Roy, “Fifty-year Perspective on Hydrothermal Research”, (1996), 1.1
    59. A. N. Lobachev, “Crystallization processes under hydrothermal conditions”, Consultants Bureau, New York, 1973
    60. J. Moon, J. A. Kerchner, H. Krarup and J. H. Adair,“Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts”, J. Mater. Res., 14, (1999), 425
    61. J. H. Lee, “Growth and characterization of ZnO nanorod arrays by aqueous solution method”, department of materials science and engineering, National Cheng Kung University, (2009)
    62. T. Sugimoto, “Preparation of Monodispered Colloidal Particles”,
    Adv. Colloid. Interface Sci., 28, (1987), 65
    63. K. Byrappa, B. Nirmala and M. Yoshimura, “Crystal Growth of Nd:RVO4 (where R=Y, Gd) under Mild Hydrothermal Conditions”, Mater. Sci. Forum, 315, (1999), 506
    64. C. Chen, J. Chen, S. Yu, L. Che and Z. Meng, “Hydrothermal synthesis of perovskite bismuth ferrite crystallites”, J. Cryst. Growth, 291, (2006), 135
    65. S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, H. W. Kang, J. S. Kim and C. Chen, “Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method”, Ceram. Int., 36, (2010), 1365
    66. K. Asami, T. Osaka, T. Yamanobe and I. Koiwa, “Metallic bismuth on strontium-bismuth tantalate thin films for ferroelectric memory application”, Surf. Interface Anal., 30, (2000), 391
    67. Handbook of X-ray photoelectron Spectroscopy, J. F. Moulder, W. F. Stickle, P. E. Sobol, et al, Editors, Perkin-Elmer Corp., Eden Praircie, MN (1992)
    68. T. Schedel-Niedrig, W. Weiss and R. Schlogl, “Electronic structure of ultrathin ordered iron oxide films grown onto Pt (111)”, Phys. Rev. B, 52, (1995), 17449
    69. A. Huang, A. D. Handoko, G. K. L. Goh, P. K. Pallathadka and S. Shannigrahi, “Hydrothermal synthesis of (001) epitaxial BiFeO3 films on SrTiO3 substrate”, CrystEngComm, 12, (2010), 3806
    70. S. R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy and A. O. Adeyeye, “Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process”, Appl. Phys. Lett., 90, (2007), 022901
    71. Z. Quan, H. Hu, S. Xu, S. Xu, W. Liu, G. Fang, M. Li, and X. Zhao, “Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol-gel process”, J. Sol-Gel Sci. Technol., 48, (2008), 261
    72. Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li and X. Zhao,“Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films”, J. Appl. Phys., 104, (2008), 084106
    73. C. M. Cho, J. H. Noh, I. S. Cho, J. S. An and K. S. Hong, “Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts”, J. Am. Ceram. Soc., 91, (2008), 3753
    74. S. Li, Y. H. Lin, B. P. Zhang, Y. Wang and C. W. Nan,“Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors”, J. Phys. Chem. C, 114, (2010), 2903
    75. H. Zhang and K. Kajiyoshi, “Hydrothermal Synthesis and Size-Dependent Properties of Multiferroic Bismuth Ferrite Crystallites”, J. Am. Ceram. Soc., 93, (2010), 3842
    76. X. Yan, J. Chen, Y. Qi, J. Cheng and Z. Meng, “Hydrothermal synthesis and characterization of multiferroic Bi1-xLaxFeO3 crystallites”, J. Eur. Ceram. Soc, 30, (2010), 265
    77. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen and G. Han,“Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method”, J. Am. Ceram. Soc., 90, (2007), 3673
    78. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. shen and G. Han,“Hydrothermal synthesis of single-crystal bismuth ferrite nanoflakes assisted by potassium nitrate”, Ceram. Int., 35, (2009), 1285
    79. M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar and J. F. Scott, “Spin-glass transition in single BiFeO3”, Phys. Rev. B, 77, (2008), 144403

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE