簡易檢索 / 詳目顯示

研究生: 王昱筑
Yu-Chu Wang
論文名稱: 以3w法量測Bi0.5Sb1.5Te3薄膜之熱傳導係數
Thermal Conductivity of Bi0.5Sb1.5Te3 Thin Films Measured by The 3w Method
指導教授: 廖建能
Chien-Neng Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 熱電材料薄膜Bi0.5Sb1.5Te3熱傳導係數3-omega method晶粒尺寸
外文關鍵詞: thermoelectrics, thin films, Bi0.5Sb1.5Te3, thermal conductivity, 3-omega method, grain size
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用濺鍍的方式將目前室溫下性質最好的熱電材料Bi0.5Sb1.5Te3濺鍍在長有二氧化矽的基板上,藉由控制基板溫度的高低得到不同晶粒尺寸的Bi0.5Sb1.5Te3薄膜。利用3ω法量測不同晶粒尺寸以及經過退火之後的Bi0.5Sb1.5Te3薄膜的熱傳導係數(κ),並利用Wiedemann-Franz law分離出載子熱傳導係數(κe)與晶格熱傳導係數(κL)。由於未退火的Bi0.5Sb1.5Te3薄膜有很高的電阻率,使熱傳導係數幾乎全由晶格熱傳導係數所貢獻,且晶格熱傳導係數隨著晶粒尺寸變大而提升。退火後,由於電阻率大幅下降,使載子熱傳導係數大幅上升。由於晶粒尺寸在退火前後沒有很大的差異,所以推測晶格熱傳導係數的上升來自退火後晶粒內部缺陷數量的減少。


    Bi0.5Sb1.5Te3 thin films are deposited on silicon dioxide substrates by RF sputtering. By changing the substrate temperature, we acquire Bi0.5Sb1.5Te3 thin films with different grain size. The thermal conductivity of Bi0.5Sb1.5Te3 thin films is measured using the 3ω method, and the lattice thermal conductivity and the electrical thermal conductivity are separated using the Wiedemann-Franz law. The lattice thermal conductivity dominates because of the high resistivity of the Bi0.5Sb1.5Te3 thin films, and it increases with greater grain size. After annealing, the electrical thermal conductivity substantially increases because of the decreasing of the resistivity, and we conjecture that the increasing of the lattice thermal conductivity results from the decreasing of the defects number in grains due to the same grain size before and after annealing.

    摘要.....................................................Ⅰ 英文摘要.................................................Ⅱ 目錄.....................................................Ⅲ 圖目錄...................................................Ⅳ 表目錄...................................................Ⅴ 第一章 緒論.............................................1 第二章 文獻回顧.........................................4 2.1 熱電原理...........................................4 2.2 熱電材料效能之提升.................................7 2.3 3ω熱傳導係數量測法 ..............................11 第三章 實驗方法..........................................16 3.1 實驗流程..........................................16 3.2 量測原理介紹......................................21 3.2.1 Seebeck係數測...............................21 3.2.2 載子濃度量測法..............................23 3.2.3 電阻率量測方法..............................27 3.2.4 3ω熱傳導係數量測法.........................28 3.2.4.1 原理簡介..............................28 3.2.4.2 考慮介面熱阻..........................33 3.2.4.3 平行膜面方向(in-plane)的熱傳導係數....35 3.2.5 晶粒尺寸的量測..............................37 第四章 實驗結果與討論....................................38 4.1使用斜率法求得熱電薄膜熱傳導係數的兩個假設.....38 4.2複合薄膜的熱傳導係數隨著Bi0.5Sb1.5Te3薄膜厚度變化的趨勢....................................................44 4.3 由斜率法所得之介面熱阻.......................49 4.4晶粒尺寸與退火製程對Bi0.5Sb1.5Te3薄膜熱傳導係數的影響..51 4.4.1晶粒尺寸對Bi0.5Sb1.5Te3薄膜熱傳導係數的影響 .......................................51 4.4.2退火效應對Bi0.5Sb1.5Te3薄膜熱傳導係數的影響 .......................................61 第五章 結論.............................................65 參考文獻.................................................67 圖目錄 圖2-1、Seebeck效應示意圖...................................5 圖2-2、Peltier效應示意圖...................................6 圖2-3、Thomson效應示意圖...................................7 圖2-4、熱電致冷器結構示意圖................................8 圖2-5、熱擴散係數量測示意圖...............................12 圖2-6、3ω method 試片型式示意圖..........................13 圖3-1、使用3ω量測法所需的金屬線圖形......................18 圖3-2、整體實驗流程圖.....................................19 圖3-3、濺鍍機.............................................20 圖3-4、Seebeck係數量測夾具................................21 圖3-5、Seebeck量測示意圖與數據處理........................22 圖3-6、霍爾量測原理示意圖.................................25 圖3-7、霍爾效應量測系統...................................26 圖3-8、霍爾效應實際量測方法示意圖.........................26 圖3-9、Van der Pauw四點量測法示意圖.......................27 圖3-10、使用3ω法所需試片結構示意圖.......................28 圖3-11、薄膜內熱傳導的外擴情形............................31 圖3-12、基板內熱傳導的外擴示意圖..........................32 圖3-13、利用斜率法得到熱電薄膜的熱傳導係數................34 圖4-1、試片結構前視圖.....................................39 圖4-2、不同基板溫度所製備各種厚度的Bi0.5Sb1.5Te3薄膜SEM照片........................................................42 圖4-3、複合薄膜總熱阻對Bi0.5Sb1.5Te3薄膜厚度的作圖........43 圖4-4、A與B兩種材料所形成的薄膜結構.......................45 圖4-5、二氧化矽薄膜量測數據圖.............................48 圖4-6、載子與聲子在多晶薄膜內的傳播模型...................52 圖4-7、BixSb2-xTe3塊材熱傳導係數隨溫度的變化圖............54 圖4-8、不同基板溫度製備的Bi0.5Sb1.5Te3薄膜的晶粒尺寸......55 圖4-9、聲子熱傳導係數對晶粒尺寸作圖.......................56 圖4-10、Bi2Te3塊材內晶格熱傳導係數隨溫度變化圖............59 圖4-11、晶粒尺寸與晶粒形狀與晶格熱傳導係數關係圖.........59 圖4-12、晶粒形狀與晶格熱傳導係數的關係圖.................60 圖4-13、晶粒尺寸與晶格熱傳導係數關係圖...................60 圖4-14、熱傳導係數隨退火溫度變化圖.......................63 圖4-15、退火前與不同退火溫度的晶粒尺寸...................64 表目錄 表4-1、不同基板溫度的試片電阻率與載子熱傳導係數...........44 表4-2、Bi0.5Sb1.5Te3薄膜試片中的介面熱阻值................50 表4-3、鋁薄膜的電傳導係數、熱傳導係數與勞倫茲數...........53 表4-4、不同基板溫度製備的Bi0.5Sb1.5Te3薄膜的電傳導與熱傳導性質........................................................53 表4-5、一些熱電材料的κ0、Rκ及Lκ值........................58 表4-6、Bi0.5Sb1.5Te3薄膜退火前後電傳導與熱傳導性質........61

    [1] K.Kishimoto, K.Yamamoto, and T.Koyanagi,”Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size”, Japanese Journal of Applied physics, 42,p.501,(2003)

    [2] Venkatasubramania, Rama, Slivola, Edward, Colppits, Thomas, O’Quinn, Brooks, “Thin-film thermoelectric devices with high room-Temperature figures of merit”, Nature 413,p.597(2001)

    [3] Thermoelectrics Handbook : Macro to Nano, edited by D.M.Rowe, Ph.D., D.Sc., Ch.46

    [4] Thermoelectrics Handbook : Macro to Nano, edited by D.M.Rowe, Ph.D., D.Sc., Ch.3

    [5] Thermoelectrics, edited by S.Nolas, J.Sharp, and H.J.Goldsmid, Ch.2, P.38

    [6] T.Yao, “Thermal properties of AlAs/GaAs superlattices”, Applied Physics Letters ,51(22) : p.1798~1800 (1987)

    [7] G.Chen, et al., “Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures”, ASME Journal of Heat Transfer, 116(2) : p.325~311 (1994)

    [8] D.G.Cahill, “Thermal conductivity measurement from 30 to 750 K : the 3ω method”, Review of Scientific Instruments, 61(2), p.802(1990)

    [9] S.M.Lee, and David G.Cahill, “Heat transport in thin dielectric films”, Journal of Applied Physics, 81(6), 15,p.2590(1997)

    [10] D.G.Cahill, M.Katiyar, J.R.Abelson, “Thermal conductivity of alpha -SiH thin films”, Physical Review B, 50, p.6077(1994)

    [11] T. Borca-Tasciuc, A.R.Kumar, and G.Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination”, Review of Scientific Instruments, 72(4),p.2139(2001)

    [12] Brandon W.Olson, Samuel Graham, Kuan Chen, “A practical extension of 3ω method to multilayer structures”, Review of Scientific Instruments, 76, 053901(2005)

    [13] J.L.Batagglia, C.Wiemer, and M.Fanciulli, “An accurate low-Frequency model for the 3ω method”, Journal of Applied Physics,101, 104510(2007)

    [14] Y.G.Kim, K.H.Kang, and K.S.Gam, “Measurement of the Seebeck coefficients of binary Cu-Ni alloys “, Measurement Science and Technology, 15, p.1266(2004)

    [15] L.J.Van der Pauw, “A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitary Shape”, Phillips Technica Review, 20, p.220(1958)

    [16] Chien.HC, Yao.DJ, Huang.MJ, “Thermal conductivity
    measurement and interface thermal resistance estimation using SiO2 thin film”, Review of Scientific Instruments, Vol.79, 054902, 2008

    [17] E.T.Swartz and R.O.Pohl, “Thermal boundary resistance”, Review of Modern Physics, Vol.61, No.3, p.606(1989)

    [18] K.Park et al., “Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion”, Material Science and Engineering, B88, p.103~106(2002)

    [19] Thermal conductivity 23, Proceedings of the 23th ICTT, edited by Kenneth E. Wilkes, Ralph B. Dinwiddie, and Ronald S. Graves, p130~143

    [20] Bed Poudel et al., “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science, Vol.320, p.634(2008)

    [21] Ce-Wen Nan and R.Birringer, “Determining the Kapitza resistance And the thermal conductivity of polycrystals : A simple model”, Physical Review B, Vol.57, No.14, p.8264(1998)

    [22] Muhammet S.Toprak et al., “The Impact of Nanostructuring on the Thermal conductivity of Thermoelectric CoSb3”, Advanced Functional Materials, 14, No.12, p.1189(2004)

    [23] Dong-Hwan Kim, Tadaoki Mitani, “Thermoelectric properties of fine-grained Bi2Te3 alloys”, Journal of Alloys and Compounds, 399 p.14-19 (2005)

    [24] 王亞帆碩士論文, “能障散射效應對Bi0.5Sb1.5Te3薄膜熱電性質影響之研究”, 國立清華大學研究所(2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE