簡易檢索 / 詳目顯示

研究生: 蔡哲瑋
Tsai, Che-Wei
論文名稱: Al0.5CoCrCuFeNi 高熵合金變形及退火行為與機械性質之研究
Deformation and Annealing Behaviors, and Mechanical Proerties of High-Entropy Alloy Al0.5CoCrCuFeNi
指導教授: 葉均蔚
Yeh, Jien-Wei
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 166
中文關鍵詞: 高熵合金冷加工機械性質變形退火奈米双晶
外文關鍵詞: high-entropy alloys, cold rolling, mechanical property, deformation, annealling, nano-twin
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討高熵合金變形行為、退火行為與機械性質,以瞭解與傳統合金行為差異之處,並找出奈米晶的可行製程。首先對FCC為主的高熵合金Al0.5CoCrCuFeNi 施以900 oC熱鍛,而後在1100 oC真空下均質化24 h後爐冷。接著在室溫施以不同滾軋加工量,以觀察微結構與機械性質的演變。另取50 %滾軋態試片以900 oC退火不同時間,以觀察退火對微結構與機械性質的影響。研究結果發現,此合金即使在900 oC熱鍛仍呈現明顯加工硬化,意指在高溫下差排不易滑動,具有較低的動態回復,此歸因於多主元素效應,因基地固溶元素多種且高濃度,故產生固溶強化,阻礙差排移動,且由於疊差能下降與空孔擴散下降,差排交叉滑移不易產生。
    此外發現合金於室溫滾軋加工初期即以奈米雙晶為主要變形機制,而當加工量增加時,奈米雙晶相互交叉切割,產生奈米晶粒,並加工硬化,此為獨特發現,即本合金採簡單的冷軋即可得奈米晶金屬塊材。此歸因於爐冷過程中基地相產生針狀富銅相析出與有序化結構阻礙差排的移動,且多元素固溶效應降低疊差能,使奈米雙晶易形成,促進雙晶變形。
    滾軋態試片在900 oC下卻需要5小時才能完全退火,顯示再結晶緩慢,此歸因於合金因晶格扭曲使疊差能及晶界能降低,進而降低再結晶驅動能,而緩慢擴散效應亦有延滯晶界的移動與阻礙差排滑移的效果。
    本研究另對此合金鍛造態的機械性質及微結構加以探討,首先將此合金在1000 oC均質化6 h後採水淬處理,而後在室溫滾軋加工,另對部分加工試片施以不同溫度之退火處理,以探討滾軋態與退火態,從室溫到900 oC臨場的拉伸表現。研究結果發現,在室溫中,滾軋態即有相當高的降伏強度(1284 MPa)與伸長率(7.6 %),退火態以900 oC 10 分鐘退火具最佳的組合:降伏強度(1021 MPa)與伸長率(15.2 %),此與極細微米晶的形成有關。長時間退火因回復或晶粒成長,強度下降較多。低於900oC的退火,雖有BCC相的析出強化,但伸長率都很低( < 3%)。
    但在300 至 600 oC 間,不論是滾壓態或退火態,因BCC 相的析出強化,使伸長率度大幅降低,呈現類似不鏽鋼的中溫脆性現象。當溫度超過700 oC時,因晶粒滑移介入,伸長率逐漸上升。此結果顯示本合金熱處理或使用應避開300 至 600 oC的溫度範圍。


    The thesis studies the deformation annealing behaviors and mechanical properties of FCC-type Al0.5CoCrCuFeNi high-entropy alloy, and finds the difference from traditional alloys and the possible method to produce nanocrystalline bulk alloys. In the first part, cast Al0.5CoCrCuFeNi was homogenized in vacuum at 1100 oC for 24 h with subsequent furnace cooling. The as-homogenizes samples were rolled with different thickness reductions at ambient temperature. The 50%-rolled sample was also annealed at 900 oC for different time. All the microstructural evolutions and mechanical properties were investigated. The results show that the alloy displayed significant work hardening and thus low dynamic recovery even during 900 oC forging. It is attributable to the multi-principal-element effect. The matrix with concentrated solute atoms had solution hardening to resist dislocation movement. In addition, dislocation cross-slip was difficult to operate because stacking fault energy and vacancy diffusion were both largely reduced. The initial deformation of Al0.5CoCrCuFeNi is accompanied by a lot of nano-twinning. This is attributable to the nano-precipitates in the matrix, which increases the stress for slip, and the low stacking fault energy which decreases the stress for twinning, respectively. Upon further deformation, the nanotwins intersected each other, forming nanograins. This is unique suggesting that a bulk nanocrystalline alloy can be obtained by simple rolling. In the annealing experiments, fully-annealed state was achieved after annealing for 5 h at 900 oC, suggesting large resistance to recrystallization. This is attributed to the low twin boundary energy and grain boundary energy which give a low driving force for recrystallization. In addition, sluggish diffusion effect also slows down the movement of grain boundary and dislocations.
    In the second part, cast Al0.5CoCrCuFeNi was homogenized in air at 1100 oC for 24 h with subsequent water quenching. The homogenized samples were then cold-rolled with 80 % thickness reduction. Some samples were further annealed at different temperatures. The results show that the as-rolled sample had high yield strength (1284 MPa) and moderate elongation to failure (7.6 %). After 900 oC for 10 min, the strength and elongation combination is optimized: elongation doubled to 15.2 % and yield strength (1021 MPa) decreased by 20 %. Longer annealing at 900 oC significantly decreased the strength due to further recovery and recrystallization. Lower temperature annealing below 800 oC increased the strengths but reduced the ductility due to the precipitation of BCC phase. From tensile testing, the elongation was quite low between 300 and 600 oC revealing intermediate-temperature embrittlement as seen in stainless steels. This phenomenon is attributed to the formation of BCC phase. The elongation gradually increases when the testing temperatures is higher than 700 oC presumably due to the activation of grain-boundary sliding. The above results suggest that the present alloys should avoid the heat treatment or applications between 300 and 600 oC.

    Contents List of Figures List of Tables Chapter. 1 Background Chapter. 2 Deformation and Annealing Behaviors of High-entropy Alloy Al0.5CoCrCuFeNi Chapter. 3 Nanostructuring via Nano-scale Cross-twinning in a Cold-rolled Al0.5CoCrCuFeNi Alloy at Room Temperature Chapter. 4 High Uniform Elongation and Strength in Ultra-fine Grained Al0.5CoCrCuFeNi Alloy by Simple Room-Temperature Rolling and Subsequent Annealing Chapter. 5 Effect of Temperature on Mechanical Properties of Al0.5CoCrCuFeNi Wrought Alloy Chapter. 6 Conclusions Chapter. 7 References Chapter. 8 Contribution of This Thesis Chapter. 9 Suggested Future Work

    [1] C. Koch, Bulk behavior of nanostructured materials., in: H.E. Siegel RW, Roco MC, (Ed.) Nanostructure science and technology, a worldwide study.Final Report by WTEC Panel, 1999, p. 93.
    [2] J.D. Embury, R.M. Fisher, " STRUCTURE AND PROPERTIES OF DRAWN PEARLITE ", Acta Metall., 14 (1966) 147-&.
    [3] Armstron.Rw, Y.T. Chou, R.M. Fisher, N. Louat, " LIMITING GRAIN SIZE DEPENDENCE OF STRENGTH OF A POLYCRYSTALLINE AGGREGATE ", Philosophical Magazine, 14 (1966) 943-&.
    [4] G. Langford, M. Cohen, Trans ASM, (1969) 623.
    [5] H.J. Rack, M. Cohen, Influence of recovery on the tensile behavior of highly-strained iron alloys, in: Murr, S.C. LE (Eds.), Mat. Sci., 1976, p. 365.
    [6] G. H., Materials with ultrafine grain size., in: H. N (Ed.) Deformation of polycrystals:mechanisms and microstructures., 1981, p. 15.
    [7] C. Suryanarayana, " NANOCRYSTALLINE MATERIALS ", Int. Mater. Rev., 40 (1995) 41-64.
    [8] R. Birringer, " NANOCRYSTALLINE MATERIALS ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 117 (1989) 33-43.
    [9] J.B. Cohen, " THE EARLY STAGES OF SOLUTE DISTRIBUTION BELOW A TRANSITION-TEMPERATURE ", Metallurgical Transactions A, 23 (1992) 2685-2697.
    [10] A. E., Acta Mater., 46 (1998) 5561.
    [11] N.J. Petch, " THE CLEAVAGE STRENGTH OF POLYCRYSTALS ", Journal of the Iron and Steel Institute, 174 (1953) 25-28.
    [12] E.O. Hall, " THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS ", Proceedings of the Physical Society of London Section B, 64 (1951) 747-753.
    [13] A. MF., Philos Mag A, 46 (1982) 737.
    [14] R.P. Andres, R.S. Averback, W.L. Brown, L.E. Brus, W.A. Goddard, A. Kaldor, S.G. Louie, M. Moscovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F. Spaepen, Y. Wang, " RESEARCH OPPORTUNITIES ON CLUSTERS AND CLUSTER-ASSEMBLED MATERIALS - A DEPARTMENT OF ENERGY, COUNCIL ON MATERIALS SCIENCE PANEL REPORT ", J. Mater. Res., 4 (1989) 704-736.
    [15] M.A. Meyers, A. Mishra, D.J. Benson, " Mechanical properties of nanocrystalline materials ", Prog. Mater. Sci., 51 (2006) 427-556.
    [16] H. Gleiter, " NANOCRYSTALLINE MATERIALS ", Prog. Mater. Sci., 33 (1989) 223-315.
    [17] N.S. Qu, D. Zhu, K.C. Chan, W.N. Lei, " Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density ", Surf. Coat. Technol., 168 (2003) 123-128.
    [18] U. Erb, " Electrodeposited nanocrystals: Synthesis, properties and industrial applications ", (1995) 533-538.
    [19] Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, " Tensile properties of copper with nano-scale twins ", Scr. Mater., 52 (2005) 989-994.
    [20] L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, " Nano-sized twins induce high rate sensitivity of flow stress in pure copper ", Acta Mater., 53 (2005) 2169-2179.
    [21] R.Z. Valiev, T.G. Langdon, " Principles of equal-channel angular pressing as a processing tool for grain refinement ", Prog. Mater. Sci., 51 (2006) 881-981.
    [22] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, " The process of grain refinement in equal-channel angular pressing ", Acta Mater., 46 (1998) 3317-3331.
    [23] T.G. Langdon, M. Furukawa, M. Nemoto, Z. Horita, " Using equal channel angular pressing for refining grain size ", JOM-J. Miner. Met. Mater. Soc., 52 (2000) 30-33.
    [24] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, " Review: Processing of metals by equal-channel angular pressing ", J. Mater. Sci., 36 (2001) 2835-2843.
    [25] Z. Horita, T. Fujinami, T.G. Langdon, " The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 318 (2001) 34-41.
    [26] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, T.G. Langdon, " Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion ", Acta Mater., 51 (2003) 753-765.
    [27] H.G. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, T.C. Lowe, " Microstructural evolution, microhardness and thermal stability of HPT-processed Cu ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 290 (2000) 128-138.
    [28] E. Schafler, R. Pippan, Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel, in: 2004, pp. 799-804.
    [29] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, " An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment ", Acta Mater., 50 (2002) 4603-4616.
    [30] K. Lu, J. Lu, " Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 375 (2004) 38-45.
    [31] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, " Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment ", Acta Mater., 51 (2003) 1871-1881.
    [32] X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, " Strain-induced grain refinement of cobalt during surface mechanical attrition treatment ", Acta Mater., 53 (2005) 681-691.
    [33] K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, " Plastic strain-induced grain refinement at the nanometer scale in copper ", Acta Mater., 54 (2006) 5281-5291.
    [34] C.S. Pande, R.A. Masumura, R.W. Armstrong, Nanostructual Material, 2 (1993) 323–331.
    [35] G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, R.W. Armstrong, " HALL-PETCH STRENGTHENING FOR THE MICROHARDNESS OF 12 NANOMETER GRAIN DIAMETER ELECTRODEPOSITED NICKEL ", Scripta Metallurgica, 20 (1986) 93-97.
    [36] A. Ball, M.M. Hutchinson, J. Mater. Sci., 3 (1969) 1.
    [37] Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma, " Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation ", Acta Mater., 52 (2004) 1859-1869.
    [38] D. Jia, K.T. Ramesh, E. Ma, " Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron ", Acta Mater., 51 (2003) 3495-3509.
    [39] U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, " DYNAMIC RECRYSTALLIZATION IN HIGH-STRAIN, HIGH-STRAIN-RATE PLASTIC-DEFORMATION OF COPPER ", Acta Metall. Mater., 42 (1994) 3183-3195.
    [40] M.A. Meyers, Y.J. Chen, F.D.S. Marquis, D.S. Kim, HIGH-STRAIN-RATE BEHAVIOR OF TANTALUM, in: Minerals Metals Materials Soc, 1995, pp. 2493-2501.
    [41] V.F. Nesterenko, M.A. Meyers, J.C. LaSalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, " Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 229 (1997) 23-41.
    [42] E. Ma, " Instabilities and ductility of nanocrystalline and ultrafine-grained metals ", Scr. Mater., 49 (2003) 663-668.
    [43] M.A. Meyers, H.R. Pak, " OBSERVATION OF AN ADIABATIC SHEAR BAND IN TITANIUM BY HIGH-VOLTAGE TRANSMISSION ELECTRON-MICROSCOPY ", Acta Metall., 34 (1986) 2493-2499.
    [44] M.A. Meyers, U.R. Andrade, A.H. Chokshi, " THE EFFECT OF GRAIN-SIZE ON THE HIGH-STRAIN, HIGH-STRAIN-RATE BEHAVIOR OF COPPER ", Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 26 (1995) 2881-2893.
    [45] M.A. Meyers, O. Vohringer, V.A. Lubarda, " The onset of twinning in metals: A constitutive description ", Acta Mater., 49 (2001) 4025-4039.
    [46] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, " Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation ", Acta Mater., 51 (2003) 4135-4147.
    [47] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, " Deformation twinning in nanocrystalline Al by molecular dynamics simulation ", Acta Mater., 50 (2002) 5005-5020.
    [48] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, " Deformation twinning in nanocrystalline aluminum ", Science, 300 (2003) 1275-1277.
    [49] X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, Y.T. Zhu, " Deformation twins in nanocrystalline Al ", Appl. Phys. Lett., 83 (2003) 5062-5064.
    [50] Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, E.J. Lavernia, " Nucleation and growth of deformation twins in nanocrystalline aluminum ", Appl. Phys. Lett., 85 (2004) 5049-5051.
    [51] Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, " High tensile ductility in a nanostructured metal ", Nature, 419 (2002) 912-915.
    [52] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, " Ultrahigh strength and high electrical conductivity in copper ", Science, 304 (2004) 422-426.
    [53] P.G. Sanders, J.A. Eastman, J.R. Weertman, " Elastic and tensile behavior of nanocrystalline copper and palladium ", Acta Mater., 45 (1997) 4019-4025.
    [54] C.J. Youngdahl, P.G. Sanders, J.A. Eastman, J.R. Weertman, " Compressive yield strengths of nanocrystalline Cu and Pd ", Scr. Mater., 37 (1997) 809-813.
    [55] G.W. Nieman, J.R. Weertman, R.W. Siegel, " MECHANICAL-BEHAVIOR OF NANOCRYSTALLINE CU AND PD ", J. Mater. Res., 6 (1991) 1012-1027.
    [56] C.C. Koch, D.G. Morris, K. Lu, A. Inoue, " Ductility of nanostructured materials ", MRS Bull., 24 (1999) 54-58.
    [57] C.C. Koch, " Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism ", Journal of Metastable and Nanocrystalline Materials 18 (2003) 9-20.
    [58] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, " Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation ", Acta Mater., 49 (2001) 2713-2722.
    [59] J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, " Softening of nanocrystalline metals at very small grain sizes ", Nature, 391 (1998) 561-563.
    [60] H. Conrad, J. Narayan, " Mechanisms for grain size hardening and softening in Zn ", Acta Mater., 50 (2002) 5067-5078.
    [61] Y.T. Zhu, X.Z. Liao, " Nanostructured metals - Retaining ductility ", Nat. Mater., 3 (2004) 351-352.
    [62] R.S. Iyer, C.A. Frey, S.M.L. Sastry, B.E. Waller, W.E. Buhro, " Plastic deformation of nanocrystalline Cu and Cu-0.2 wt.% B ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 264 (1999) 210-214.
    [63] J.E. Carsley, A. Fisher, W.W. Milligan, E.C. Aifantis, Mechanical behavior of a bulk nanostructured iron alloy, in: Minerals Metals Materials Soc, 1998, pp. 2261-2271.
    [64] Y.M. Wang, E. Ma, M.W. Chen, " Enhanced tensile ductility and toughness in nanostructured Cu ", Appl. Phys. Lett., 80 (2002) 2395-2397.
    [65] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, " Deformation behavior and plastic instabilities of ultrafine-grained titanium ", Appl. Phys. Lett., 79 (2001) 611-613.
    [66] D. Jia, K.T. Ramesh, E. Ma, Scr. Mater., 42 (2000) 73.
    [67] Q. Wei, D. Jia, K.T. Ramesh, E. Ma, " Evolution and microstructure of shear bands in nanostructured Fe ", Appl. Phys. Lett., 81 (2002) 1240-1242.
    [68] C.H. Xiao, R.A. Mirshams, S.H. Whang, W.M. Yin, Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel, in: Elsevier Science Sa, 2001, pp. 35-43.
    [69] R.A. Mirshams, C.H. Mao, S.H. Whang, W.M. Yin, " R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 315 (2001) 21-27.
    [70] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, " Deformation of electrodeposited nanocrystalline nickel ", Acta Mater., 51 (2003) 387-405.
    [71] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, " Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements ", Metall. Mater. Trans. A, 36A (2005) 881-893.
    [72] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, " Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements ", Metall. Mater. Trans. A, 36A (2005) 1263-1271.
    [73] J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, " Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content ", Wear, 261 (2006) 513-519.
    [74] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, " Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition ", Metall. Mater. Trans. A, 35 (2004) 1465-1469.
    [75] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, M.H. Chuang, " Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy ", Metall. Mater. Trans. A, 37A (2006) 1363-1369.
    [76] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu, " Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys ", Mater. Trans., 47 (2006) 1395-1401.
    [77] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, " Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys ", Intermetallics, 15 (2007) 357-362.
    [78] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, " Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties ", Appl. Phys. Lett., 90 (2007) 3.
    [79] F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, " Tensile and Compressive Mechanical Behavior of A CoCrCuFeNiAl0.5 High Entropy Alloy ", Inter. J. Mod. Phy. B, 23 (2009) 1254-1259.
    [80] L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, " Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy ", Intermetallics, 17 (2009) 266-269.
    [81] T.T. Shun, Y.C. Du, " Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy ", J. Alloy. Compd., 479 (2009) 157-160.
    [82] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, " Preparation and characterization of AlCrTaTiZr multi-element nitride coatings ", Surf. Coat. Technol., 201 (2006) 3275-3280.
    [83] H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, " Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings ", Surf. Coat. Technol., 202 (2008) 3360-3366.
    [84] M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, " Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N-x coatings ", J. Phys. D-Appl. Phys., 41 (2008).
    [85] P.K. Huang, J.W. Yeh, " Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating ", Surf. Coat. Technol., 203 (2009) 1891-1896.
    [86] C.H. Lai, S.J. Lin, J.W. Yeh, A. Davison, " Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings ", J. Phys. D-Appl. Phys., 39 (2006) 4628-4633.
    [87] P.K. Huang, J.W. Yeh, " Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings ", J. Phys. D-Appl. Phys., 42 (2009) 115401.
    [88] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, " Thermally stable amorphous (AlMoNbSiTaTiVZr)(50)N50 nitride film as diffusion barrier in copper metallization ", Appl. Phys. Lett., 92 (2008) 3.
    [89] M.H. Tsai, J.W. Yeh, J.Y. Gan, " Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon ", Thin Solid Films, 516 (2008) 5527-5530.
    [90] K.H. Huqng, In ed., National Tsing Hua University, Hsinchu, Taiwan, 1996.
    [91] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, " Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes ", Adv. Eng. Mater., 6 (2004) 299-303.
    [92] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, " Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating ", Adv. Eng. Mater., 6 (2004) 74-78.
    [93] H.Y. Chen, C.W. Tsai, C.C. Tung, J.W. Yeh, T.T. Shun, C.C. Yang, S.K. Chen, " Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys ", Ann. Chim.-Sci. Mat., 31 (2006) 685-698.
    [94] J.W. Yeh, " Recent progress in high-entropy alloys ", Ann. Chim.-Sci. Mat., 31 (2006) 633-648.
    [95] W.F. Smith, In Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill Inc., New York 1993, pp. 1-568.
    [96] G.E. Dieter, In Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1994, pp. 227-271.
    [97] F.R. Doer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, In Cohesion in Metals, 2nd ed., North-Holland Physics Publishing Netherlands, 1988, pp.
    [98] F.J. Humphreys, M. Hatherly, In Recrystallization and Related Annealing Phenomena 1st ed., Elservier Science Ltd Oxford, UK, 1996, pp. 135-146, pp. 206-216.
    [99] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, " Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements ", Mater. Chem. Phys., 103 (2007) 41-46.
    [100] R.E. Reed-Hill, R. Abbaschian, In Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, MA, 1994, pp. 538-561.
    [101] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, " Bulk nanostructured materials from severe plastic deformation ", Prog. Mater. Sci., 45 (2000) 103-189.
    [102] R. Valiev, " Nanostructuring of metals by severe plastic deformation for advanced properties ", Nat. Mater., 3 (2004) 511-516.
    [103] R. Srinivasan, B. Cherukuri, P.K. Chaudhury, Scaling up of equal channel angular pressing (ECAP) for the production of forging stock, in: Z. Horita (Ed.) Trans Tech Publications Ltd, 2006, pp. 371-378.
    [104] L. Remy, " KINETICS OF FCC DEFORMATION TWINNING AND ITS RELATIONSHIP TO STRESS-STRAIN BEHAVIOR ", Acta Metall., 26 (1978) 443-451.
    [105] S. Krishnamurthy, K. Qian, R. Reed-Hill, In Practical Applications of Quantitative Metallography, ASTM, Philadelphia, 1984, pp. 41-46.
    [106] C. Deng, F. Sansoz, " Enabling Ultrahigh Plastic Flow and Work Hardening in Twinned Gold Nanowires ", Nano Lett., 9 (2009) 1517-1522.
    [107] L. Lu, X. Chen, X. Huang, K. Lu, " Revealing the Maximum Strength in Nanotwinned Copper ", Science, 323 (2009) 607-610.
    [108] K.A. Afanasyev, F. Sansoz, " Strengthening in gold nanopillars with nanoscale twins ", Nano Lett., 7 (2007) 2056-2062.
    [109] S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, " Cold rolling behaviour of an austenitic, Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning ", Acta Mater., 52 (2004) 2005-2012.
    [110] G.H. Xiao, N.R. Tao, K. Lu, " Microstructures and mechanical properties of a Cu-Zn alloy subjected to cryogenic dynamic plastic deformation ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 513-14 (2009) 13-21.
    [111] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, " Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation ", Nat. Mater., 1 (2002) 45-48.
    [112] X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, " Deformation twinning in nanocrystalline copper at room temperature and low strain rate ", Appl. Phys. Lett., 84 (2004) 592-594.
    [113] H. Rosner, J. Markmann, J. Weissmuller, " Deformation twinning in nanocrystalline Pd ", Philos. Mag. Lett., 84 (2004) 321-334.
    [114] Y.M. Wang, A.M. Hodge, J. Biener, A.V. Hamza, D.E. Barnes, K. Liu, T.G. Nieh, " Deformation twinning during nanoindentation of nanocrystalline Ta ", Appl. Phys. Lett., 86 (2005) 3.
    [115] X.L. Wu, E. Ma, " Deformation twinning mechanisms in nanocrystalline Ni ", Appl. Phys. Lett., 88 (2006) 3.
    [116] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, " Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements ", Metall. Mater. Trans. A, 35A (2004) 2533-2536.
    [117] E. Hellstern, H.J. Fecht, Z. Fu, W.L. Johnson, " STRUCTURAL AND THERMODYNAMIC PROPERTIES OF HEAVILY MECHANICALLY DEFORMED RU AND AIRU ", J. Appl. Phys., 65 (1989) 305-310.
    [118] M. Ke, S.A. Hackney, W.W. Milligan, E.C. Aifantis, " OBSERVATION AND MEASUREMENT OF GRAIN ROTATION AND PLASTIC STRAIN IN NANOSTRUCTURED METAL THIN-FILMS ", Nanostruct. Mater., 5 (1995) 689-697.
    [119] Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, " Grain boundary-mediated plasticity in nanocrystalline nickel ", Science, 305 (2004) 654-657.
    [120] J. Hirsch, K. Lucke, M. Hatherly, " MECHANISM OF DEFORMATION AND DEVELOPMENT OF ROLLING TEXTURES IN POLYCRYSTALLINE FCC METALS .3. THE INFLUENCE OF SLIP INHOMOGENEITIES AND TWINNING ", Acta Metall., 36 (1988) 2905-2927.
    [121] S.G. Chowdhury, S. Das, B. Ravikumar, S. Kumar, G. Gottstein, In Textures of Materials, Pts 1 and 2, 2002, pp. 1371-1376.
    [122] R.W. Armstrong, " GRAIN-SIZE EFFECTS AND THEIR IMPORTANCE TO POLYCRYSTAL MECHANICAL-PROPERTIES ", Trans. Indian Inst. Met., 39 (1986) 85-97.
    [123] K.S. Kumar, H. Van Swygenhoven, S. Suresh, " Mechanical behavior of nanocrystalline metals and alloys ", Acta Mater., 51 (2003) 5743-5774.
    [124] T. Kulik, " Nanocrystallization of metallic glasses ", J. Non-Cryst. Solids, 287 (2001) 145-161.
    [125] D.G. Morris, M.A. Morris, " MICROSTRUCTURE AND STRENGTH OF NANOCRYSTALLINE COPPER ALLOY PREPARED BY MECHANICAL ALLOYING ", Acta Metall. Mater., 39 (1991) 1763-1770.
    [126] L. Lu, M.L. Sui, K. Lu, " Superplastic extensibility of nanocrystalline copper at room temperature ", Science, 287 (2000) 1463-1466.
    [127] H.S. Kim, M.H. Seo, S.I. Hong, " Plastic deformation analysis of metals during equal channel angular pressing ", J. Mater. Process. Technol., 113 (2001) 622-626.
    [128] F.J.H.a.M. Hatherly, In Recrystallization and Related Annealing Phenomena, 1st ed., Oxford, OX, UK, Tarrytown, N.Y., U.S.A., 1995, pp. 1-9, 173-220, 235-279.
    [129] W.A. Oates, Configurational entropies of mixing in solid alloys, in: Asm International, 2007, pp. 79-89.
    [130] T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, " Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering ", Surf. Coat. Technol., 188-89 (2004) 193-200.
    [131] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, " Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel ", Corrosion Sci., 47 (2005) 2257-2279.
    [132] T. Biswas, S. Ranganathan, " Multicomponent alloys visualized as lower order alloys: Examples of quasicrystals and metallic glasses ", Ann. Chim.-Sci. Mat., 31 (2006) 649-656.
    [133] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, " Microstructure and compressive properties of AlCrFeCoNi high entropy alloy ", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 491 (2008) 154-158.
    [134] Y.Y. Chen, U.T. Hong, J.W. Yeh, H.C. Shih, " Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 degrees C high-purity water ", Appl. Phys. Lett., 87 (2005) 3.
    [135] C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, " On the elemental effect of AlCoCrCuFeNi high-entropy alloy system ", Mater. Lett., 61 (2007) 1-5.
    [136] M.X. Xia, S.G. Zhang, C.L. Ma, J.G. Li, " Evaluation of glass-forming ability for metallic glasses based on order-disorder competition ", Appl. Phys. Lett., 89 (2006) 3.
    [137] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, " Solid-solution phase formation rules for multi-component alloys ", Adv. Eng. Mater., 10 (2008) 534-538.
    [138] H.F. Kuo, W. Chin, T.W. Cheng, W.K. Hsu, J.W. Yeh, " Hyperfine splitting from magnetic boride domains embedded in Fe-Co-Ni-Al-B-Si alloy ", Appl. Phys. Lett., 89 (2006) 3.
    [139] T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, " Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering ", Surf. Coat. Technol., 200 (2005) 1361-1365.
    [140] H. Committee, In Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, Ohio, 1979, pp. 324.
    [141] H. Committee, In Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, Ohio, 1990, pp. 867.
    [142] H. Committee, In Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, Ohio, 1990, pp. 621.
    [143] H. Committee, In Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, Ohio, 1979, pp. 63.
    [144] H. Committee, In Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, Ohio, 1980, pp. 17-27.
    [145] W.F. Smith., In Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill Inc., New York 1993, pp. 296-299,pp. 166-168.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE