簡易檢索 / 詳目顯示

研究生: 陳韋翰
Chen, Wei-Han
論文名稱: 含鐵廢酸資源化製備奈米氧化鐵及氧化鐵/矽砂吸附重金屬之複合材料研究
Preparation of nano iron oxide from recycled waste pickle acid and its heavy metal adsorption study by the coating on silica sand
指導教授: 王竹方
口試委員: 張怡怡
蔣本基
談駿嵩
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 82
中文關鍵詞: 資源化氧化鐵電漿玻璃化
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將含鐵廢酸資源化製備成奈米氧化鐵矽砂複合材料,應用在重金屬與放射性核種之吸附研究。研究過程中嘗試利用交流熱電漿技術製備磁性不同之γ相氧化鐵(γ–Fe2O3)和α相氧化鐵(α–Fe2O3)。在熱電漿作用過程中,γ–Fe2O3會逐漸轉換成α–Fe2O3,因此可由順磁性大小之改變分辨樣品中γ–Fe2O3和α–Fe2O3的比例。使用異相懸浮法製備之氧化鐵覆膜矽砂(IOCS),被用來吸附廢水樣品中重金屬(鉻(VI), 鉛(II), 鎳(II), 鋅(II), 鎘(II), 鈷(II), 鍶(II)與銫(I))等金屬離子,研究發現IOCS對於重金屬鉻(VI), 鉛(II), 鎳(II), 鋅(II), 鎘(II), 鈷(II)具有較佳的吸附效果,而對於鍶及銫元素的吸附能力則較弱。吸附後之IOCS利用電漿熔融技術玻璃化。


    In the study, the iron containing waste acid was applied to recycle nano iron oxide materials in preparing a Fe/Si absorbent for the adsorption study. The recycled iron oxide material is compatible to reagent grade. It has similar paramagnetic properties and purity. Recently, Magnetic nanoparticles have attracted a great deal of attention due to their versatile applications as in advanced functional materials on high-density recording media, biomedical, magnetic fluids, catalysts and adsorbents etc. Iron oxide nanoparticles have many merits compared to other nanoparticles such as less toxicity, bio compatible and more chemically stable. Hence, it is worthy to address our investigation toward the characteristics of these nanoparticles. Conventionally, iron oxide nanoparticles have been prepared by aqueous solution method, which involved the oxidation and reduction reaction of ferrous and ferric ions. However more and more preparation methodologies have been developed for nanoparticle synthesis. Among those, some are thermal plasma reactions. In this studies, a fast track AC thermal plasma methodology is involved in the synthesis of γ–Fe2O3 and α–Fe2O3 from ferrous waste acid.

    During the thermal plasma treatment, the crystallite of γ–Fe2O3 will transform to α–Fe2O3 by the evident of paramagnetic strength disappearance. Therefore we have developed a unique technique to distinguish the ratio of γ–Fe2O3 and α–Fe2O3 in its mixture. Preparation and characterization of silica coated with iron oxides are described in the study. A heterogeneous reaction is employed to coat γ–Fe2O3 and α–Fe2O3 on silica sands (IOCS). The adsorption of heavy metal ions (Cr(VI), Pb(II), Ni(II), Zn(II), Cd(II)) and radionuclides (Co(II), Sr(II), Cs(I)) through modified IOCS is examined. The adsorption result for heavy metals group is strong. As for radionuclide adsorption study, only cobalt has strong adsorption on IOCS surface. Strontium and Cesium are weakly adsorbed on IOCS surface. The plasma vitrefication experiments toward radionuclide adsorbed by IOCS explained the feasibility of radioactivity fixation.

    中文摘要 I Abstract II Acknowledgement IV Chapter 1 Motivation 1 Chapter 2 Literature review 4 2.1 Introduction of Iron Containing Waste Acid 4 2.2 Plasma Technology 8 2.2.1 Plasma and Its Type 8 2.2.2 Thermal Plasma Treatment of Wastes 11 2.2.3 Superiority of Plasma Synthesis 14 2.3 Iron Oxide Coated Silica (IOCS) 17 2.3.1 Adsorption of IOCS 19 2.3.2 Mechanism of Metal Sorption by IOCS 21 2.4 Determining Mechanisms of Desorption and Regeneration 22 2.5 Vitrification 23 Chapter 3 Experiments 26 3.1 Chemical Reagents and Instruments 26 3.1.1 Chemical Reagents 26 3.1.2 Experimental Instruments 28 3.2 Preparation of Iron Oxide 29 3.2.1 Synthesis of Iron Oxide 29 3.2.2 Synthesis of Iron-Oxide Coating Silica (IOCS) 31 3.3 Experimental and Analysis Equipment 33 3.4 Adsorption Experiment 45 3.5 Vitrification test 46 Chapter 4 Result and discussion 47 4.1 Characterization of Iron Species During the Treatment 47 4.1.1 Element Contents in Various Iron Species 47 4.1.2 FT-IR spectroscopy 49 4.1.3 XRD Profile 51 4.1.4 Dynamic Laser Spectrum 53 4.1.5 Scanning Electron Microscope 55 4.1.6 Magnetization of α - Fe2O3 and γ - Fe2O3 56 4.2 Characterizations and Properties of IOCS 58 4.2.1 Energy Dispersive X-ray Spectroscopy 58 4.2.2 FT-IR Spectrum 60 4.2.3 XRD Profile 62 4.2.4 Magnetic Property 63 4.3 Adsorption Study 66 4.3.1 Comparison of Adsorption abilities among various materials 67 4.3.2 Kinetics of Adsorption 69 4.3.3 pH Dependent on Adsorption behavior 71 4.4 Waste Vitrification 75 Chapter 5 Conclusions and Suggestions 77 5.1 Conclusions 77 5.2 Suggestions 79 Chapter 6 Reference 80

    1. Jha, M. K.; Kumar, V.; Singh, R., Solvent extraction and ion exchange 2002, 20 (3), 389-405.
    2. Ortiz, I.; Bringas, E.; San Román, M. F.; Urtiaga, A. M., Separation science and technology 2005, 39 (10), 2441-2455.
    3. A. Mersmann, M. A., Chem. Eng. Technol 1994, 17, 1-9.
    4. A. F. Wells, Annu. Rep. Chem. Soc. 1946, 43, 62.
    5. S. Kumari, A. A., Min. Proc. Ext. Met. Rev. 2006, 27, 159-175.
    6. R.L. Nyirendra, W. S. P., Min. Eng. 1998, 11(1), 23-27.
    7. T. Ozdemir, C. O., Chem. Eng. Commun 2006, 193, 548-563.
    8. 詹仕, 產業綠色技術研討會 2008.
    9. X.Y. Chen, Y. F. L., J. Vac. Sci. and Technol. 2004, 22, 1731.
    10. K. Moustakas, D. F., J. Hazard. Mater. 2005, 123, 120-126.
    11. (a) G. Soucy, R. B., High Temp. Mater. Processes 1998, 2, 195-206; (b) H.S. Park, C. G. K., J. Ind. Eng. Chem. 2006, 12, 216-223.
    12. H.S. Park, S. J. K., J. Ind. Eng. Chem. 2005, 11, 657-665.
    13. E. Pfender, J. Ind. Eng. Chem. 1999, 19, 1-31.
    14. Ni Y, G. X., Zhang Z, Ye Q., Chem Mater 2002, 14, 1048.
    15. Pascal C, P. J., Favier F, Moubtassim MLE, Payen C., Chem Mater 1999, 11, 141.
    16. Veintemillas-Verdaguer S, B.-M. O., Morales MP., Scripta Mater 2002, 47, 589.
    17. Wang Q, Y. H., Shi J, Zou G., Mater Res Bull 2001, 36, 503.
    18. Fang J, K. A., Zhou WL, Stokes KL., Mater Res Bull 2003, 38, 461.
    19. Lee SJ, J. J., Shin SC, Kim JC, Kim JD., J Magn Magn Mater 2004, 282, 147.
    20. Jing Z, W. S., J Solid State Chem 2004, 177, 1213.
    21. (a) Balasubramanian C, G. V., Rohatgi VK, Das AK, Bhoraskar SV., Nanotechnology 2004, 15, 370; (b) De Crescenzi M, C. P., Scarselli M, Diociaiuti M, Chaudhari PS, Balasubramanian C, et al., Appl Phys Lett 2005, 86, 231901.
    22. Balasubramaniam C, K. Y., Banerjee I, Bakare PP, Date SK, Das AK, et al., Mater Lett 2004, 58, 3958.
    23. Banerjee, I., Khollam, Y.B., Balasubramanian, C., Pasricha, R., Bakare, P.P., Patil, K.R., Das, A.K. and Bhoraskar, S.V., Scr. Mater. 2006, 54, 1235-1240.
    24. Sposito, G., The surface Chemistry of Soil. New York, 1984.
    25. W. Stumm, Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural system. John Wiley & Sons, New York, 1992.
    26. A.L. Mills, J. S. H., Appl. Environ. Microbiol 1994, 60, 3300-3306.
    27. J.N. Ryan, P. M. G., Environ. Sci. Technol 1994, 28, 1717-1726.
    28. W.H. Hendershot, L. M. L., Soil Sci. Soc. Am. J. 1983, 47, 1252-1260.
    29. R. S. Stahl, B. R. J., Soil Sci. Soc. Am. J. 1991, 55, 1287-1290.
    30. K. Hanna, J. Colloid Interface Sci. 2007, 309, 419-428.
    31. Benjamin, M. M.; Leckie, J. O., Journal of Colloid and Interface Science 1981, 79 (1), 209-221.
    32. (a) Schultz, M. F.; Benjamin, M. M.; Ferguson, J. F., Environmental science & technology 1987, 21 (9), 863-869; (b) Edwards. M., B. M. M., J. Water Pollut. Control Fed 1989a, 61, 481-490.
    33. Edwards, M.; Benjamin, M. M., Research Journal of the Water Pollution Control Federation 1989, 1523-1533.
    34. Lo. S. L., S. S. H., Lin. C. F., Lee. D. Y., Environ. Geochem. and Health, 1994, 15, 88-89.
    35. (a) L. Weng, E. J. M. T., W.H. Van Riemsdijk,, Environ. Sci. Technol. 2001, 35, 4436-4443; (b) L.Weng, E. J. M. T., S. Lofts, E. Tipping, W.H. Van Riemsdijk,, Environ. Sci. Technol. 2002, 36, 4804-4810; (c) L.W. Lion, R. S. A., J.O. Leckie,, Environ. Sci. Technol. 1982, 16, 660-666; (d) M.P. Papini, A. B., M. Majone, M. Beccari,, Indust. Engineer. Chem. Res. 2002, 41, 1946-1954; (e) R.E. Jackson, K. J. J. I., Contam. Hydrol. 1989, 4, 27-50; (f) D. Dong, Y. M. N., L.W. Lion, M.L. Shuler, W.C. Ghiorse,, Water Res. 2000, 34, 427-436.
    36. M. Edwards, M. M. B., J.Water Pollut. Control Fedn. 1989, 61, 1523-1533.
    37. X. Meng, R. D., Letterman, Environ. Sci. Technol. 1993, 27, 970-975.
    38. X. Meng, R. D. L., Environ. Sci. Technol. 1993, 27, 1924-1929.
    39. V. Uygur, D. L. R., Europ. J. Soil Sci. 2000, 51, 511-516.
    40. J.A. Coston, C. C. F., J.A. Davis,, Geochim. Cosmochim. Acta 1995, 59, 3535-3547.
    41. Qi R. Wang, Y. C., Separation and Purification Technology 2007, 57, 170-175.
    42. McKinley S.G., A. R. J., Chem. Commun. 2003, 20, 2620-2621.
    43. Hernandez-Maldonado, A. J. S., Ind. Eng. Chem. Res. 2004, 43, 769-776.
    44. Colombo, P.; Brusatin, G.; Bernardo, E.; Scarinci, G., Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science 2003, 7 (3), 225-239.
    45. Sakai, S.; Hiraoka, M., Municipal solid waste incinerator residue recycling by thermal processes. Waste Management 2000, 20 (2-3), 249-258.
    46. Gordon, D.; Tzeng, K.; Clayton, C.; Dangor, A.; Malka, V.; Marsh, K.; Modena, A.; Mori, W.; Muggli, P.; Najmudin, Z., Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave. Physical review letters 1998, 80 (10), 2133-2136.
    47. Nakashima, M.; Fukui, T.; Nakashio, N.; Isobe, M.; Ohtake, A.; Wakui, T.; Hirabayashi, T., Characterization of solidified products yielded by plasma melting treatment of simulated non-metallic radioactive wastes. Journal of Nuclear Science and Technology 2002, 39 (6), 687-694.
    48. Vaidyanathan, A.; Mulholland, J.; Ryu, J.; Smith, M. S.; Circeo, L. J., Characterization of fuel gas products from the treatment of solid waste streams with a plasma arc torch. Journal of environmental management 2007, 82 (1), 77-82.
    49. Moustakas, K.; Xydis, G.; Malamis, S.; Haralambous, K. J.; Loizidou, M., Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance. Journal of hazardous materials 2008, 151 (2), 473-480.
    50. Cheng, T.; Huang, M.; Tzeng, C.; Cheng, K.; Ueng, T., Production of coloured glass–ceramics from incinerator ash using thermal plasma technology. Chemosphere 2007, 68 (10), 1937-1945.
    51. Jung, C. H.; Osako, M., Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Chemosphere 2007, 69 (2), 279-288.
    52. Khan, F. I.; Husain, T.; Hejazi, R., An overview and analysis of site remediation technologies. Journal of environmental management 2004, 71 (2), 95-122.
    53. D. Hoak, C. J. L., Ind. Eng. Chem. 1945, 37(6), 553.
    54. M. F. Parveen, S. U., J.Appli. Poly. Sci. 2010, 118, 1728-1737.
    55. Namduri H., N., S.,, Corros. Sci. 2008, 50, 2493.
    56. Liang X, W. X., Zhuang J, Chen YT, Wang DS, Li YD, Adv Funct mater 2006, 16, 1805.
    57. al., I. B. e., Scripta Materialia 2006, 54, 1235-1240.
    58. A. Scheidegger, M. B., Geoderma 1993, 58, 43-65.
    59. J.W. Nowok, J. P. H., Energy & Fuels 1993, 7, 1135-1140.
    60. U. Schwertmann, H. T., Clay Minerals 1976, 11, 189-200.
    61. S.J. Allen, P. A. B., J. Chem. Tech. Biotechnol. 1995, 62, 17-24.
    62. M.L. Peterson, G. E. B., Colloids Surf. A 1996, 107, 77-88.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE