研究生: |
陳昭榮 Jhao-Rong Chen |
---|---|
論文名稱: |
微Rayleigh-Bénard對流式聚合酶連鎖反應系統 Micro Rayleigh-Bénard polymerase chain reaction system |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 聚合酶連鎖反應 、微機電系統技術 、Rayleigh-Bénard對流 、雙股螺旋體 |
外文關鍵詞: | Polymerase Chain Reaction().PCR, Micro-Electro-Mechanical-System, Rayleigh-Bénard Convection, DNA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目標在設計一利用對流方式來做聚合酶連鎖反應之系統,其包括採用微機電系統技術(Micro-Electro-Mechanical-
System)研發微型的加熱器、溫度感測器及對流反應腔,並結合量測與控制電路做成一完整系統,以應用於微小型PCR系統中,達成DNA大量複製的目標。
在微型PCR晶片部分主要可分兩部分,第一部份為利用Rayleigh-Bénard對流原理設計一特定形狀尺寸之反應腔並製作;第二部分則製作微加熱器及微溫度感測器的結構,最後將兩部分接合形成一完整微型PCR晶片。
溫度控制系統部分,主要設計週邊量測電路得到一精確量測訊號,並利用8051單晶片對量測訊號作控制處理,最後運用脈波寬度調變的方式控制加熱器的功率輸出,以期改善在PCR的參數循環中溫度的準確及穩定性。
最後以平板膠電泳實驗證實本系統的實用性,與商用機器結果比較,可發現此晶片比起商用機器可大量縮短作用時間。且根據所設計之不同尺寸對流槽PCR實驗結果與模擬所得之溫度與速度分佈結果相互比較,使用者未來可結合所設定之參數與CFDRC軟體模擬結果來對反應槽作最佳化設計,以此減少總反應時間。
Polymerase chain reaction (PCR) is a molecular biological method for the in vitro amplification of nucleic acid molecule. In this thesis, the research object was to design a micro PCR system which involved a Rayleigh-Bénard convection PCR chip, measurement circuits, and temperature control circuits. Rayleigh-Bénard convection PCR chip was easy to be fabricated, and the sample solution in it can transit its temperature immediately. Thus, the faster the speed of flow is, the higher heating and cooling rate is.
Rayleigh-Bénard convection PCR chip can be divided into two parts. First part is a chip with micro heaters and micro temperature sensors. Second part is PDMS reaction chamber designed by Rayleigh-Bénard convection theory.
Temperature control system is designed to keep temperature on the top and bottom chips by Pulse width modulation control. Analog temperature signal is precisely measured by circuits. Then the signal is processed by an 8051 single chip, and the output power of micro heaters is controlled to adjust the temperature of top and down plates.
Finally, agarose gel electrophoresis is used to verify the practicability of Rayleigh-Bénard convection PCR system. By comparing with the PCR experiments done by the commercial PCR machine and our chips, our chips can plenty decrease the reaction time. And By comparing with the simulation and PCR experiments of different designed sizes, users can use setted parameters and CFD results to do optimal designs and then decrease the total reaction time in the future.
參考文獻
[1] M. T. C. M.A.Northrup, R.M.White,R.T.Waston, "DNA Amplifyication with a Microfabricated Reaction Chamber," in Proc.Transdecers'93. Chicago, USA, 1993, pp. 924-926.
[2] C. G. M. A. Northrup, D. Hadley, R.F. Hills, P. Landre, S. Lehew, R.Saiki, J. J. Sninsky, R. Watson, R. Waston Jr., "A MEMS-Based Miniature DNA Analysis System," Transducers '95 Eurosensors IX, pp. 764-767, 1995.
[3] S. I. J. H. Daniel, R. B. Millington, D. E. Moorf, C. R. Lowe, D. I.Leslie, M. A. Lee, M. J. Pearce, "Silicon Microchamber for DNA Amplification," Sensors & Actuators A, vol. 71, pp. 81-88, 1998.
[4] C. D. Z. Zhan, Y. Zhongyao, W. Li, "Biochip of PCR Amplification in silicon," 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, 2000.
[5] M. A. L. C. G. J. Schabmueller, A. G. R. Evans, A.Bruunnschweiler, G. J. Ensell, D. L. Leslie, "Closed Chamber PCR Chips for DNA Amplification," Engineering Science and Education Journal, 2000.
[6] Y. M. H. Nagai, S. Wakida, E. Niki, E. Tamiya, "High Throuput Single Cell PCR on a silicon Microchamber Array," Micro Total Analysis Systems 2001, pp. 268-270, 2001.
[7] A. J. d. M. Martin U.Kopp, Andreas Manz, "Chemical Amplification-Continuous PCR on a chip," SCIENCE, vol. 280, pp. 1046-1048, 1998.
[8] A. Y. Kai Sun, Yutaka Ishida, Shigeki Matsuo, Hiroaki Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sensors and Actuators B, vol. 84, pp. 283-289, 2002.
[9] R. C. C. F. Chou, P. Roberts, D. Sadler, S. Lin, A. Mulholland, N.Swami, R. Terbrueggen, F. Zenhaysern, "A Miniaturized Cyclic PCR Device," Micro Total Analysis Systems 2001, pp. 151-152, 2001.
[10] R. P. O. e. al, "Infrared-Mediated thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA," Anal.Chem, vol. 70, pp. 4361-4368, 1998.
[11] Y. T. Maxim N Slyadnev, Manabu Tokeshi, and Takehiko Kitamori, "hotothermal temperature control of a chemical reaction on a microchip using a infrared diode laser," Anal.Chem, vol. 73, pp. 4037-4044, 2001.
[12] E. K. W. e. al, "Convectively driven polymerase chain reaction thermal cycler," 7th International Conference on Miniaturized Chemical and Biochemical Analysis systems, pp. 1133-1135.
[13] N. L. G. Dieter Braun, Albert Libchaber, "Exponential DNA Replication by Laminar convection," Physical review letters, vol. 91, pp. Number.15.
[14] 張. 張建裕, "基礎PCR."
[15] F. X. G. J.Pallares, Francesc Giralt, "Flow transitions in laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh number," International Journal of Heat and Mass Transfer, vol. 42, pp. 753-769, 1999.
[16] G. N. G.Muller, W.Weber, "Natural convection in vertical Bridgman configuration," Journal of Crystal Growth, vol. 70, pp. 78-93, 1984.
[17] J. W. W. W.L.Heitz, "Critical Rayleigh Numbers for Natural Convection of Water Confined in Square Cells With L/D From 0.5 to 8," Journal of Heat Transfer, pp. 188, 1971.
[18] 孫清華編譯, "感測器應用電路的設計與製作."
[19] 沈. 吳金戍, 郭庭吉, "8051單晶片微電腦實習與應用."
[20] 蔡朝洋, "單晶片微電腦8051/8951原理與應用."