簡易檢索 / 詳目顯示

研究生: 林鴻嘉
Lin, Hung-Chia
論文名稱: 介電濕潤液珠操控技術開發與生醫檢測應用
Development and medical diagnostics of an EWOD droplet manipulation technology
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 介電濕潤液珠操控生醫數位微流體系統
外文關鍵詞: EWOD, Droplet manipulation, Biomedical, Digital microfluidic system
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係開發一項介電溼潤液珠操控技術,並搭配此項技術開發也自行組配了雙平面式液珠操控實驗平台與共平面式液珠操控實驗平台。本實驗平台已具備了基本的液珠傳輸、混合、分離及成型等四大基本功能,並針對生醫檢體進行了驅動測試。目前本實驗平台可操控的生醫檢體包含了生殖醫學上常用的試管嬰兒胚胎植入培養液(IVF medium)、公豬豬精、去氧核糖核酸(deoxyribonucleic acid,DNA)、線性選殖載體(linearized cloning vector)、酵素(enzyme)以及磷酸鹽(phosphate-buffered saline,PBS)等緩衝溶液。透過共平面式液珠操控實驗平台的建構,可完成一個開放式的數位微流體系統,使用者可以更有彈性的進行液珠的傳輸及混合等反應,若要進行液珠成型的機制只要外加一個疏水上蓋即可完成,另外本晶片皆利用透明的ITO 玻璃來製作,在後續的光學檢測及影像擷取皆非常便利。
    為了能將此液珠操控技術實際應用在生醫檢測上,所以本研究所開發之實驗平台必須具備自動化進樣系統的功能,透過此系統的規劃可前置處理生醫檢測上所需不同濃度的檢體與試劑,為了驗證此項功能便透過葡萄糖序列稀釋實驗來完成,透過實驗結果可知利用本實驗平台所處理完成的液珠濃度與利用傳統pipette所調配出來的液珠濃度誤差在5%以下,證實了本實驗平台具備了自動化進樣系統的功能。最後本研究也利用共平面式液珠操控實驗平台完成了核酸接合反應(DNA ligation)的實驗,此外本實驗也探討了不同試劑的混合次序及時間對於DNA cloning的影響。


    摘要 特別聲明 目錄 圖目錄 表目錄 第一章 研究背景、動機與目的 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 論文架構 第二章 文獻回顧 2.1電濕潤液珠操控技術開發相關文獻 2.1.1 介電濕潤方式液珠操控技術 2.1.2光電濕潤方式液珠操控技術 2.1.3靜電力方式液珠操控技術 2.1.4介電泳方式液珠操控技術 2.1.5熱毛細力方式液珠操控技術 2.1.6基材表面改質方式液珠操控技術 2.2 電溼潤液珠操控技術於生醫檢測應用 2.3 介電濕潤之現象介紹與理論基礎分析 2.3.1數位微流體系統與介電溼潤現象 2.3.2 接觸角與表面張力 2.3.2 介電溼潤液珠操控之基礎理論分析 2.4 文獻總結 第三章 研究方法與步驟 生物檢體操控測試 核酸接合反應實驗設計 3.1 雙平面式液珠操控實驗平台設計開發 41 3.1.1 晶片設計與製程 3.1.2 控制電路設計 3.1.3 人機介面軟體設計 3.1.4 實驗平台軟硬體整合 3.2 共平面式液珠操控實驗平台設計開發 3.2.1 晶片設計與製程 3.2.2 控制電路設計 3.2.3 人機介面軟體設計 3.2.4 實驗平台軟硬體整合 3.3 實驗平台功能測試 3.4 生物檢體操控測試 3.5實驗平台之自動化進樣系統實驗設計 3.6核酸接合反應實驗設計 第四章 實驗結果與討論 4.1 液珠操控機制功能測試 4.1.1 雙平面式液珠操控實驗平台 4.1.1.1 液珠傳輸功能測試 4.1.1.2 液珠混合功能測試 4.1.1.3 液珠分離功能測試 4.1.2 共平面式液珠操控實驗平台 4.1.2.1 液珠傳輸功能測試 4.1.2.2 液珠混合功能測試 4.1.2.3 液珠分離功能測試 4.1.2.4 液珠成型功能測試 4.2 生醫檢體操控測試 4.2.1 雙平面式液珠操控實驗平台 4.2.2 共平面式液珠操控實驗平台 4.3 實驗平台之自動化進樣系統實驗 4.4 核酸接合反應實驗 第五章 結論與未來研究方向 5.1 介電溼潤液珠操控技術開發 5.2 實驗平台之自動化進樣系統實驗 5.3 核酸接合反應實驗 參考文獻

    1. Feynman, R., There's Plenty of Room at the Bottom. Journal of Microelectromechanical Systems, 1992. 1(1): p. 60-66.
    2. Feynman, R., Infinitesimal Machinery. Journal of Micro Electro Mechanical Systems, 1993. 2(1): p. 4-14.
    3. Linnemann, R. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases. in IEEE International Conference on MEMS. 1998. Heidelberg, Germany.
    4. Maillefer, D. A High-Performance Silicon Micropump for an Implantable Drug Delivery System. in IEEE International Conference on MEMS. 1999. Orlando, Florida, USA.
    5. Shoji, S., S. Nakagawa, and M. Esashi, Micropump and sample injector for integrated chemical analyzing systems. Sensors and Actuators A, 1990. 21A: p. 189-192.
    6. Judy, J.W., T. Tamagawa, and D.L. Polla. Surface-machined micromechanical membrane pump. in IEEE International Conference on MEMS. 1991. Nara, Japan.
    7. Zengerle, R. A bidirectional silicon micropump. in IEEE International Conference on MEMS. 1995. Amsterdam, Netherlands.
    8. Grosjean, C., X. Yang, and Y.-C. Tai. A Practical Thermopneumatic Valve. in IEEE International Conference on MEMS. 1999. Orlando, Florida USA.
    9. Jeong, O.C. and S.S. Yang, Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sensors and Actuators A, 2000. 83: p. 249-255.
    10. Zhang, W. and C.H. Ahn. A bi-directional magnetic mciropump on a silicon wafer. in Solid-State Sensor and Actuator Workshop. 1996. Hilton Head Island, SC, USA.
    11. Darabi, J., M.M. Ohadi, and D. DeVoe, An electrohydrodynamic polarization micropump for electronic cooling. Journal of Microelectromechanical System, 2001. 10(1): p. 98-106.
    12. Manz, A., Electroosmotic pumping and electrophoretic sparations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 1994. 4: p. 257-265.
    13. Zeng, S., Fabrication and characterization of electroosmotic micropumps. Sensors and Actuators A, 2001. 79: p. 107-114.
    14. Benard, W.L., Thin-film shape-memore alloy actuated micropumps. Journal of Microelectromechanical System, 1998. 7(2): p. 245-251.
    15. Makino, E., T. Mitsuya, and T. Shibata, Fabrication of TiNi shape memory micropump. Sensors and Actuators A, 2001. 88: p. 256-262.
    16. Xu, D., Characteristics and fabrication of NiTi/Si diaphragm micropump. Sensors and Actuators A, 2001. 93(1): p. 87-92.
    17. Ho, C.-M. Fluidics - the link between micro and nano science and technologies. in IEEE International Conference on MEMS. 2001. Interlaken, Switzerland.
    18. Lee, J. and C.-J. Kim, Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW). Journal of Microelectromechanical Systems, 2000. 9(2): p. 171-180.
    19. Lee, J., et al., Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling. Sensors and Actuators A: Physical, 2002. 95(2): p. 259-268.
    20. Cho, S.K., H. Moon, and C.J. Kim, Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits IEEE/ASME Journal of Microelectromechenical Systems, 2003. 12(1): p. 70-80.
    21. U.C. Yi and C.J. Kim, EWOD actuation with electrode-free cover plate, in The 13th Intemational Conference on Solid-state Sensors, Actuators and Microsystem. 2005: Los Angeles, CA, USA. p. 89-92.
    22. U.C. Yi and C.J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes. Journal of Micromechanics and Microengineering, 2006(16): p. 2053–2057.
    23. Wang, T.-T., P.-W. Huang, and S.-K. Fan. DROPLETS OSCILLATION AND CONTINUOUS PUMPING BY ASYMMETRIC ELETROWETTING. in IEEE conf. MEMS. 2006.
    24. Chiou, P.Y., et al., Optical Actuation of Microfluidics Based on Opto-Electrowetting, in Solid-State Sensor, Actuator and Microsystems Workshop. 2002: Hilton Head Island, South Carolina. p. 269-272.
    25. Chiou, P.Y., Z. Chang, and M.C. Wu. Light Actuated Microfluidic Devices in IEEE The 16th Annual International Conference on Micro Electro Mechanical Systems. 2003. Kyoto.
    26. Chiou, P.Y., et al., Light Actuation of Liquid by Optoelectrowetting. Sensors and Actuators A: Physical, 2003. A104(3): p. 222–228.
    27. Ichimura, K., S.K. Oh, and M. Nakagawa, Light-Driven Motion of Liquids on a Photoresponsive Surface. Science, 2000. 288(5471): p. 1624-1626.
    28. Rosario, R., et al., Lotus Effect Amplifies Light-Induced Contact Angle Switching. Journal of Physical Chemistry B, 2004. 108(34): p. 12640-12642.
    29. Washizu, M., Electrostatic Actuation of Liquid Droplets for Microreactor Applications IEEE Transactions on Industry Applications, 1998. 34(4): p. 732-737.
    30. Jones, T.B., et al., Factors Influencing Response Time of DEP Microfluidic Actuation, in The 6th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS). 2002: Nara, Japan.
    31. Ahmed, R., et al., Dispensing Picoliter Droplets Using DEP Micro-Actuation, in First International Conference on Microchannels and Minichannels. 2003: New York, USA.
    32. Ahmed, R., et al., Dispensing Picoliter Droplets Using Dielectrophoretic (DEP) Microactuation. Microscale Thermophysical Engineering, 2004. 8(3): p. 271-283.
    33. Ahmed, R. and T.B. Jones, Dispensing Picoliter Droplets on Substrates Using Dielectrophoresis. Journal of Electrostatics, 2006. 64(7-9): p. 543-549.
    34. Jones, T.B. Dynamics of Dielectrophoretic Liquid Microactuation. in 4th Int'l Conference on Applied Electrostatics. 2001. Dalian, China.
    35. Jones, T.B., et al., Dielectrophoretic Liquid Actuation and Nanodroplet Formation. Journal of Applied Physics, 2001. 89(2): p. 1441-1448.
    36. King, M.R., et al., Size-selective Deposition of Particles Combining Liquid and Particulate Dielectrophoresis. Journal of Applied Physics, 2005. 97(5).
    37. Darhuber, A.A. and J.P. Valentino, Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays. Journal of Microelectromechanical Systems, 2003. 12(6): p. 873-879.
    38. N. Verplanck, et al., SUPERHYDROPHOBIC SURFACES: FROM IRREVERSIBLE TO REVERSIBLE ELECTROWETTING. Nano Lett., 2007. 7(3): p. 813 -817.
    39. He, B. and J. Lee. Dynamic wettability switching by surface roughness effect. in IEEE The Sixteenth Annual International Conference. 2003.
    40. Yasuda, T., K. Suzuki, and I. Shimoyama. Automatic Transportation of a Droplet on a Wettability Gradient Surface. in The 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems. 2003. California, USA
    41. Srinivasan, V., V. K.Pamula, and R.B. Fair, Droplet-based Microfluidic Lab-on-a-chip for Glucose Detection. Analytica Chimica Acta 2004. 507(1): p. 145-150.
    42. M. G. Pollack, et al. Investigation of electrowetting-based microfluidics for real-time PCR applications. in Proc. μTAS. 2003.
    43. V. Srinivasan, et al. Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform,. in Micro Total Analysis Systems. 2003.
    44. Lippmann, M.G., Relations entre les phénomènes electriques et capillaires. Ann. Chim. Phys., 1875. 5(11): p. 494–549.
    45. Matsumoto, H. and J.E. Colgate. Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension. in Proc. IEEE MEMS Workshop. 1990. Napa Valley, CA, USA.
    46. Moon, H., et al., Low Voltage Electrowetting-On-Dielectric. Journal of Applied Physics, 2002. 92(7): p. 4080-4087.
    47. Pollack, M.G., A.D. Shenderov, and R.B. Fair, Electrowetting-Based Actuation of Droplets for Integrated Microfluidics. Lab on a Chip, 2002. 2(2): p. 96-101.
    48. Fair, R.B., et al. Electrowetting-Based On-Chip Sample Processing for Integrated Microfluidics. in IEEE International Electron Devices Meeting (IEDM'03.). 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE