研究生: |
林鉦揚 Lin, Cheng-Yang |
---|---|
論文名稱: |
以鉑原子團簇修飾銅核鈀殼結構增強鉑於氧氣還原反應之質量活性與長時效穩定性之探究 Heterogeneous Cu – Pd Binary Interface Boosts Stability and Mass Activity of Atomic Pt Clusters in Oxygen Reduction Reaction |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
陳燦耀
Chen, Tsan-Yao 蔡煌銘 Tsai, Huang-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 燃料電池 、氧氣還原反應 、質量活性 、穩定性 |
外文關鍵詞: | Fuel cell, Oxygen reduction reaction, Mass activity, Stability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用濕式化學還原法,以硼氫化鈉(NaBH4)作為還原劑,依序將銅、鈀、鉑金屬離子還原至多層奈米碳管,形成銅核鈀殼結構外層修飾鉑金屬團簇的三元(素)奈米金屬粒子,作為燃料電池陰極觸媒材料,將鉑金屬負載量降至5~13 wt%,與商業鉑金屬觸媒(J.M.-Pt/C)鉑金屬附載量(20 wt%)相比,大幅降低鉑金屬負載量,經鹼性環境下做電化學實驗,其氧氣還原反應位於0.85 V vs RHE的電位下質量活性(M.A.Pd+Pt)為J.M.-Pt/C的兩倍,且經由長時效的穩定性測試,40000 圈的氧化還原反應後,觸媒仍保有92%的反應電流,遠高於J.M.-Pt/C(5000 圈60%的反應電流)。
本研究分為三個部分,藉由不同核殼式結構觸媒(Cu@Pt, Pd@Pt)與三元觸媒(Pt/Cu@Pd)進行比較,確認三元觸媒的確優於二元觸媒。並改變三元觸媒鉑金屬負載量,以探究不同鉑金屬團簇的分散性與大小對於氧氣還原活性的影響氧氣還原活性的影響。最後將三元觸媒進行熱還原退火,比較退火前與退火後的氧氣還原活性、穩定性差異。
結構分析可得知,XRD結果顯示觸媒大小在5~10 nm之間,並得知鈀金屬可有效的控制銅顆粒的成長,減少銅氧化物的生成。XPS發現三元觸媒使鉑金屬更易附著於奈米粒子表面,形成金屬團簇結構,並由光電子束縛能(Binding Energy)的變化確定電子由銅金屬轉移至鉑金屬,增強其氧氣還原活性。XAS的結果則顯示,鉑金屬團簇,可使d軌域能帶結構產生改變,使鉑金屬d軌域電子空缺率減少,增益其氧氣還原反應之催化活性。長時效的測試結果可了解觸媒的腐蝕機制,腐蝕速率不同,表面殘餘的銅元素可作為犧牲層取代鉑金屬先被腐蝕,使觸媒粒子有效的提升其氧氣還原之穩定性。在退火XAS與XRD的分析結果顯示,退火後鉑金屬結構可由金屬團簇結構,轉變為合金結構,增強其氧還原反應之面積活性與穩定性。
本實驗藉由第二種或第三種元素的添加、退火的控制確定了不同鉑金屬結構的變化與觸媒氧氣還原反應之活性之關聯性,並有效的增加其催化電流與減少鉑金屬的使用率,將增加陰離子交換膜燃料電池(AEMFC)發展潛力。
The Pt/Cu@Pd NC is synthesized with ternary metallic, copper, palladium and Platinum by using wet chemical reduction method, which configuration of NC is a Cu@Pd core and atomic Pt clustersin the top. Pt are well known for their unique electrocatalytic properties but it’s expensive. In this experiment design, to reduce the cost and enhance oxygen reduction reaction (ORR), the reduction of atomic Pt clusters loading in Pt/Cu@Pd NC (5~13 wt %) compares with commercial Pt catalysts (20 wt %). At 0.85 volt (vs RHE), the mass activity (MA) of Pt/Cu@Pd NC which is 2-times higher than Pt catalysts of commercial retained at ~92% in accelerated degradation test (ADT) for 40000 cycles.
In this dissertation, compared the properties of dispersivity and size of Pt clusters and stability in ORR with (ⅰ) ternary metallic NC (Pt/Cu@Pd) and binary metallic catalyst (Cu@Pt, Pd@Pt) (ⅱ) difference Pt clusters loading in Pt/Cu@Pd (ⅲ) annealing of ternary metallic NC. The XRD is widely applied to analysis the morphological and structural characteristic of catalysts which shows that the size of catalysts are about 5~10 nm. The XPS results are confirmed that the surface of Pt/Cu@Pd is higher amount of Pt than the binary metallic NC. In addition, Binding energy is verified that the electrons are obviously transferred from Cu to Pt and higher activity for ORR. The Pt clusters can reduce the unoccupied orbitals and increase the activity from XAS results.
The accelerated durability test (ADT) was used to assess the mechanism of catalysts. The Pt/Cu@Pd has high stability for ORR owing to corrosion of residual Cu on the ternary metallic NC. After annealing of ternary metallic NC, the results in XAS and XRD analysis shows that structure of Pt clusters become alloy which can increase the specific activity and stability. Finally, the annealing of ternary metallic catalysts (Pt/Cu@Pd) are certainly clusters and alloy of Pt structure which is related to activity in ORR. Additionally, Pt/Cu@Pd potentially enhances the current of ORR and reduction amount of Pt. thereby, ternary metallic Pt/Cu@Pd catalyst was better in binary metallic catalyst and commercial Pt so Pt/Cu@Pd was selected to be catalyst.
1. J. Wisniak, Indian Journal of History of Science, 2015, 50.
2. D. S. Cameron, Platinum Metals Rev., 1978, 22, 38-46.
3. A. Kirubakaran, S. Jain and R. K. Nema, Renewable and Sustainable Energy Reviews, 2009, 13, 2430-2440.
4. Q. He and E. J. Cairns, Journal of The Electrochemical Society, 2015, 162, F1504-F1539.
5. N. M. Marković, T. J. Schmidt and P. N. Ross, Fuel Cells, 2001, 1.
6. D. Garraín, Y. Lechón and C. d. l. Rúa, Smart Grid and Renewable Energy, 2011, 02, 68-74.
7. M. Shao, Q. Chang, J. P. Dodelet and R. Chenitz, Chemical reviews, 2016, 116, 3594-3657.
8. J. Zhang, Z. Xia and L. Dai, Science Advances, 2015, 1.
9. W. Xia, A. Mahmood, Z. Liang, R. Zou and S. Guo, Angewandte Chemie International Edition, 2016, 55, 2650-2676.
10. A. S. Xiaoming Ge, † Delvin Wuu,† Tao An,† Bing Li,† F. W. Thomas Goh,† and T. S. Andy Hor, †,‡ Yun Zong,*,† and Zhaolin Liu*,†, ACS Catalysis, 2015, DOI: 10.1021/acscatal.5b00524, 4643-4667.
11. E. Yeager, Journal of Molecular Catalysis, 1986, 38, 5-25.
12. J. Z. F. H. B. Lima , M. H. Shao , K. Sasaki , M. B. Vukmirovic , E. A. Ticianelli , and R. R. Adzic, J. Phys. Chem., 111, 404–410.
13. M. Shao, Journal of Power Sources, 2011, 196, 2433-2444.
14. .
15. M. Shao, A. Peles and K. Shoemaker, Nano letters, 2011, 11, 3714-3719.
16. C. Wang, D. van der Vliet, K.-C. Chang, H. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic and V. R. Stamenkovic, The Journal of Physical Chemistry C, 2009, 113, 19365-19368.
17. Y. K. Chen Chen, Ziyang Huo, Zhongwei Zhu, Wenyu Huang, Huolin L. Xin, Joshua D. Snyder, Dongguo Li, Jeffrey A. Herron, Manos Mavrikakis, Miaofang Chi, Karren L. More, Yadong Li, Nenad M. Markovic, Gabor A. Somorjai, Peidong Yang, Vojislav R. Stamenkovic, Science, 2014, 343, 1339-1343.
18. L. Han, H. Liu, P. Cui, Z. Peng, S. Zhang and J. Yang, Scientific reports, 2014, 4, 6414.
19. R. Xie, Y. Pan and H. Gu, RSC Adv., 2015, 5, 16497-16500.
20. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.
21. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver and J. K. Nørskov, Journal of Molecular Catalysis A: Chemical, 1997, 115, 421-429.
22. Y. Saejeng and N. Tantavichet, Journal of Applied Electrochemistry, 2008, 39, 123-134.
23. T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang and Y.-E. Sung, The Journal of Physical Chemistry C, 2009, 113, 19732-19739.
24. F. Taufany, C. J. Pan, H. L. Chou, J. Rick, Y. S. Chen, D. G. Liu, J. F. Lee, M. T. Tang and B. J. Hwang, Chemistry, 2011, 17, 10724-10735.
25. V. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J. K. Norskov, Angewandte Chemie, 2006, 45, 2897-2901.
26. F.-J. Lai, H.-L. Chou, L. S. Sarma, D.-Y. Wang, Y.-C. Lin, J.-F. Lee, B.-J. Hwang and C.-C. Chen, Nanoscale, 2010, 2, 573-581.
27. S. J. Hwang, S. K. Kim, J. G. Lee, S. C. Lee, J. H. Jang, P. Kim, T. H. Lim, Y. E. Sung and S. J. Yoo, Journal of the American Chemical Society, 2012, 134, 19508-19511.
28. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nature Chemistry, 2010, 2, 454-460.
29. S. Xie, S.-I. Choi, N. Lu, L. T. Roling, J. A. Herron, L. Zhang, J. Park, J. Wang, M. J. Kim, Z. Xie, M. Mavrikakis and Y. Xia, Nano letters, 2014, 14, 3570-3576.
30. F. Taufany, C.-J. Pan, J. Rick, H.-L. Chou, M.-C. Tsai, B.-J. Hwang, D.-G. Liu, J.-F. Lee, M.-T. Tang, Y.-C. Lee and C.-I. Chen, ACS Nano, 2011, 5, 9370-9381.
31. S. A. Park, E. K. Lee, H. Song and Y. T. Kim, Scientific reports, 2015, 5, 13552.
32. T. Iwasita, Electrochimica Acta, 2002, 47, 3663-3674.
33. A. R. K. a. G. J. Offe, Physical Chemistry Chemical Physics, 2008,, 10, 3699-3711.
34. Z. Jin, P. Li and D. Xiao, Scientific reports, 2014, 4, 6712.
35. P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau and M. Driess, ACS Catalysis, 2015, 5, 2017-2027.
36. W. Vielstich, H. Yokokawa and H. A. Gasteiger, (Book) Handbook of Fuel Cells Fundamentals Technology and Applicotions.
37. M. P. Seah and W. A. Dench, SURFACE AND INTERFACE ANALYSIS, 1979, 1.
38. J. J. Yeh and I.Lindau, 1985.
39. M. Newville, (BOOK) Fundamentals of XAFS, 2004.
40. A. Mottana, Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 14-19.