簡易檢索 / 詳目顯示

研究生: 賴淑萍
Lai, Shu-Ping,
論文名稱: 矽奈米線作為觸媒載體之低溫高效能甲醇轉換器研製
Low Operating Temperature POM Reaction Micro-Methanol Reformer with Silicon Nano-Wires Supported Nano-Catalysts
指導教授: 曾繁根
Tseng, fan-gang,
錢景常
口試委員: 曾繁根
葉宗洸
吳樸偉
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 微型甲醇轉換器矽奈米線質子交換膜燃料電池
外文關鍵詞: Methanol micro-reformer, Si nano-wires, PEM fuel cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功研發出一低溫高效能微型甲醇反應器-具矽奈米線結構完全填滿於微流道高度作為POM(Partial Oxidation of Methanol)反應觸媒載體者,更適合作為質子交換膜燃料(Proton Exchange Membrane Fuel cell, PEMFC) 電池前端氫氣供應器,因其可有效提升較低溫操作時之氫氣產率,有利燃料處理器(約180℃~250℃操作,傳統較常使用之SRM反應甲醇反應器操作溫度約>320℃)與較低溫操作(~80℃)之質子交換膜燃料電池結合使用,作為攜帶式3C產品電力。研究中微型甲醇反應器效能提升主要是藉由(1)矽奈米線結構導入微米流道提供大反應面積,(2)硬膜光阻製程發展增進觸媒塗佈均勻性,(3)奈米線結構設計為完全填滿於微流道高度迫使反應氣體與觸媒碰撞發生催化反應,
    (4)根據探討觸媒中各成份對觸媒塗佈形貌影響調整觸媒溶液配置,將250℃之氫氣產率由原先3.9*10-8 mole/min提升至1.5*10-6 mole/min,增加了38倍;而較低溫之180℃反應氫氣產率也由2.8*10-8 mole/min提升至8.8*10-7 mole/min,增加了31倍,朝其作為質子交換膜燃料電池之供氫系統使用邁進了一大步。


    In this paper, we proposed a new design of a high performance methanol micro-reformer for hydrogen production which integrated low temperature catalysts supported by silicon nano-wires inside micro-channels with multi-inlet and in-parallel channel. Without complicated fabrication process, the reforming performance of micro-reformer with Si nano-wire fully filled channel-passageways in height and length compared to that without nano-wires supported can enhanced by 38 folds more hydrogen yield;and the hydrogen yield at 180 oC and 250 oC are 8.8×10-7 mole/min and 1.5×10-6 mole/min, respectively. The enhancement of this new design micro-reformer was attributed to (1) the large surface area that the Si nano-wires can provided,(2) hard membrane photoresist process which assisted in better catalytic coating morphology,(3) the special design of Si nano-wires fully filled channel-passageways in height and length was expected to be able to force reactive-gases contact with catalysts,(4) the detailed discussions of how the different ingredients in catalysts
    solution influence the catalytic coating morphology。

    目錄 致謝…………………………………………………………II 摘要…………………………………………………………IV Abstract………….…………………………………………V 目錄…………………………………………………………VI 表目錄…………………………………...………………VIII 圖目錄………………………………………………………IX 第一章 緒論………………………………………………1 1.1 前言………………………………………………1 1.2 燃料電池工作原理………………………………5 1.3 燃料轉換器(reformer)…………………………9 第二章 文獻回顧…………………………………………12 2.1 甲醇重組反應觸媒及其載體………………13 2.2 微型甲醇重組反應器………………………15 第三章 實驗方法…………………….…………………17 3.1 實驗架構………………………………………17 3.2 甲醇轉換器流道設計……………………………21 3.3 奈米結構整合於微流道…………………………23 3.4 非電金屬沉積法製備矽奈米線…………………27 3.5 甲醇轉換效能測試架構…………………………28 第四章 實驗結果與討論…………………………………30 4.1 硬膜光阻製程應用…………………………34 4.2 第一代設計-奈米線整合於流道…………….37 4.3 第二代設計-完全填滿奈米結構於微流道高度……42 4.3.1 影響奈米線成長形貌參數……………………………44 4.3.2 硬膜光阻於第二代流道設計使用參數調整…………51 4.3.3 Slurry法各成份對觸媒於奈米線上承載影響探討…53 4.3.4 第二代流道設計複合硬膜光阻製程之甲醇轉換效能探討57 4.3.5 第二代流道設計之流道長度加長-甲醇轉換效能探討…59 第五章 結論………………………………………………………61 第六章 未來實驗規劃……………………………………………63 第七章 參考文獻…………………………………………………64 表目錄 表1 燃料電池依工作溫度分類及其特點整理………………………4 表2 簡述SRM、POM、OSRM甲醇轉換反應之優缺點………………10 表3 文獻中微型甲醇反應器效能正規化後相比較………………16 表4 本實驗室實驗成果與文獻資料正規化後相比較……………62 圖目錄 圖1.1 燃料電池工作原理示意圖…………………………………6 圖3.1 不具奈米線結構製程流程…………………………………18 圖3.2 具奈米線結構製程流程圖…………………………………19 圖3.3 (a)螺旋瑞士捲型流道 (b)平形多重入口流道…………22 圖3.4 平行多重進料入口直流道設計………………………….22 圖3.5 奈微米結構導入微米流道概念示意圖…………………23 圖3.6 第一代流道設計示意圖-整合奈米線於微流道壁………24 圖3.7 第一代流道設計與晶向間關係示意圖………………….25 圖3.8 第二代設計示意圖-矽奈米線結構完全填滿於微流道高度…26 圖3.9 第二代流道設計與晶向間關係示意圖…………….…26 圖3.10 非電金屬沉積法蝕刻奈米線之機制示意圖……………27 圖3.11 甲醇轉換器封裝於不□鋼載具…………………………29 圖3.12 甲醇轉化效能測試架構示意圖…………………………29 圖4.1 Sol-gel法觸媒於矽流道 (a)平面分佈側視圖(b)平面分佈上視圖(c)流入承載剖面圖…31 圖4.2 Slurry法觸媒 (a)形貌上視圖(b)於封裝流道一次乘載(c)於封裝流道多次乘載側視圖…32 圖4.3 直流道中分別封裝流入承載Sol-gel法與Slurry法之觸媒甲醇轉換效能 (a)甲醇轉換率 (b)氫氣選擇率 (c)氫氣產率……………33 圖4.4 (a) 流道封裝後以流入方式承載 (b) 硬膜光阻製程進行觸媒承載…………….35 圖4.5 硬膜光阻製程 (a)熱壓硬膜光阻並顯影 (b)觸媒承載 (c)80度NMP溶液掀除硬膜…36 圖4.6 硬膜光阻製程分別運用於 (a) Sol-gel法觸媒塗佈 (b) Slurry法觸媒塗佈…………36 圖4.7 封裝承載Sol-gel法/硬膜光阻製程運用於Slurry法甲醇轉換效能……………37 圖4.8 (a)未經/ (b)經 KOH預處理2分鐘之矽奈米線蝕刻形貌……38 圖4.9 濃度0.037M AgNO3+8.3%HF溶液,50℃反應5分鐘之矽奈米線…………39 圖4.10 封裝流入Sol-gel法觸媒於 (a)不具/ (b)具奈米線結構於微流道壁者塗佈形貌…………41 圖4.11 Slurry法觸媒於奈米線中塗佈形貌側視圖及上視圖………41 圖4.12 未蝕刻/蝕刻矽奈米線於流道壁之Sol-gel/Slurry法承載 微型甲醇轉換器效能分析…………………………………………42 圖4.13 改變EMD法中各成份濃度、溫度觀察其對奈米線成長形貌之影響…………44 圖4.14 改變EMD法反應時間觀察其對奈米線成長形貌之影響………46 圖4.15 改變EMD法反應面積觀察其對奈米線蝕刻形貌之影響………47 圖4.16 改變EMD法反應溫度觀察其對奈米線蝕刻形貌之影響………48 圖4.17 固定晶片矽裸露面積為65mm2之奈米線蝕刻分別反應5和10分鐘 (a)0.037M AgNO3 + 8.3 % HF,50℃ (b) 0.037M AgNO3 + 8.3 % HF,40℃ (c) 0.074M AgNO3 +16.6% HF,40℃………………………………50 圖4.18 硬膜光阻分別於180℃及100℃輾壓後、顯影前之SEM觀察...52 圖4.19 硬膜光阻分別於180℃及100℃輾壓並顯影後之SEM觀察…52 圖4.20 硬膜光阻於180℃輾壓顯影後並進行Slurry觸媒承載之SEM觀察………53 圖4.21 Slurry法觸媒溶液中各成份於奈米線結構上塗佈形貌 (a)純皂土 (b) 純氧化鋁 (c) 氧化鋁加皂土……………………54 圖4.22 觸媒溶液混合各種不同成份於奈米線結構上塗佈形貌差異 (a)觸媒+氧化鋁+皂土水溶液 (b)觸媒+氧化鋁水溶液 (c)純觸媒水溶液………………56 圖4.23 純觸媒承載於矽奈米線上經NMP浸泡後於電子顯微鏡下形貌…………….56 圖4.24 比較硬膜承載不具奈米結構Slurry/具奈米結構Slurry/具奈米結構純觸媒承載之甲醇轉換效能……………………………58 圖4.25 比較總流道長度為1.5cm及2.0cm之具奈米線結構完全填滿微流道於高度並承載純觸媒者之甲醇轉換效能………………………60

    [1] 黃鎮江,”燃料電池”,全華科技圖書股份有限公司
    [2] COMSOL, 2007, Simwe中國仿真互動網, http://www.simwe.com/art/tec/2007-06-26/tec0-9-904.shtml, last accessed on October, 28, 2010.
    [3] B. Lindstrom, L.J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrog. Energy 26 (2001) 923933.
    [4] T. Takahashi, M. Inoue, T. Kai, “Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared form amorphous alloys”, Appl. Catal. A 218 (2001) 189-195.
    [5] Z. F. Wangm, J. Y. Xi, W. P. Wang, G. X. Lu, J., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures“, Mol. Catal. A: Chemical, 191 (2003) 123-136.
    [6] S. Schuyten, E.E. Wolf, “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming” Catal. Lett. 106 (2006) 7-14.
    [7] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chem. Commun. (2004) 1426-1427.
    [8] S. Velu, K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Top. Catal. 22 (2003) 235-244.
    [9] T. Shishido, Y. Yamamoto, H. Morioka, K. takehira, “production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, J. Mol. Catal. A: Chem. 268 (2007) 185-194.
    [10] D.S. Watkins, in: L.J.M.J. Blomen, M.N.Mugerwa (Eds.), “Fuel Cell Systems”, Plenum Press, New York (1993) p.493.
    [11] H. Kahrom, “Proceedings of the European Fuel cell Forum Portable Fuel cell conference”, Lucerne (1999) 159.
    [12] 李紹淮,不同的製備及塗佈銅錳鋅觸媒於微型甲醇重組器之研究, (2009)
    [13] D. R. Palo, R. A. Dagle, Jamie D. Holladay, “Methanol Steam Reforming for Hydrogen Production”, Chem. Rev. 107 (2007), 3992-4021
    [14] H. M. Yang and P. H Liao, “Preparation and activity of Cu/Zno-CNTs nano-catalyst on steam reforming of methanol”, App. Catalysis, 317 (2007), 226-233.
    [15] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu,
    “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a
    Silicon Surface with Catalytic Metal Particles”, Adv. Funct. Mater. 16 (2006) 387-394.
    [16] C. Y. Chen, C. S. Wu, C. J. Chou, T. J. Yen, “Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature”, Adv.
    Mater. 20 (2008) 3811–3815.
    [17] R. W. Lee and S. J. Kim,”Reformer for Fuel Cell,Pub”. No. US20070071661, Pub. Date Mar.29,2007
    [18] 陳德銘,陽極氧化鋁模板法製作奈米結構材料及其電子場發射特性研究, (2008)
    [19] N. K. Park, G. B. Han, J. D. Lee, S. O. Ryu, T. J. Lee, “The Growth of ZnO Nano-Wire by A Thermal Evaporation Method with Very Small Amount of Oxygen”, Current Applied Physics 6 (2006) 176-181.
    [20] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from
    Aqueous Solutions”, Adv. Mater. 15 (2003) 464-466.
    [21] X. Jiang, T. Herricks, Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Substrates in Air”, Nano Lett. 2 (2002) 1333-1338.
    [22] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, “Synthesis of Well-Ordered
    CuO Nanofibers by a Self-Catalytic Growth Mechanism”, Appl. Phys. Lett.
    82 (2003) 3316–3318.
    [23] P.K. Giri, Soumen Dhara, Ritun Chakraborty,“Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays”, Materials Chemistry and Physics 122 (2010) 18–22.
    [24] Lionel Vayssieres,“Growth of Arrays Nanorods and Nanowires of ZnO from Aqueous Solutions”, Advanced Material 15 NO.5 March 4 (2003) 464–466.
    [25] Y. G. Lin, Y. K. Hsu, S. Y. Chen, Y. K. Lin, L. C. Chen, K. H. Chen,
    “Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst”, Angew. Chem..Int. Ed. 48 (2009) 7586–7590.
    [26] Sohn et al., International Journal of Hydrogen Energy, 2007.
    [27] S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, H. H. Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields”, Energy Conversion and Management 47(2006) 1868-1878
    [28] de Souza A, Gonzalez ER. “Influence of the operational parameters on the performance of polymer electrolyte membrane fuel cells with different flow fields”, J. Solid State Electrochem 7 ( 2003) 651-657.
    [29] Nguyen TV. “A gas distribution design form proton-exchange- membrane fuel cells”. J. Electrochem Soc 143 (1996) 103-105.
    [30] D. Park, T. Kim, S. Kwon, C. Kim, E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells”, Sensors and Actuators A 135 (2007) 58–66.
    [31] 王奕勳,使用奈米碳管承載觸媒於微型甲醇重組反應器設計製造與測試, (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE