簡易檢索 / 詳目顯示

研究生: 林玟君
Lin, Wen-Jun
論文名稱: 長壽命無藍害有機發光二極體
Long lifetime blue hazard free organic light-emitting diode
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 王欽戊
Wang, Ching-Wu
薛景中
Shyue, Jing-Jong
岑尚仁
Chen, Sun-Zen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 129
中文關鍵詞: 長壽命低色溫無藍害有機發光二極體
外文關鍵詞: long lifetime, low color temperature, blue hazard free, OLED
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 市面上大多照明產品都含有大量藍光,然而,藍光會對人體產生危害,甚至提升罹癌風險;因此,為了保護人類生理健康,我們需要一個低藍害或無藍害的照明;類燭光有機發光二極體(OLED) 因其具有低藍害之特性,而成為到目前為止最安全之照明;然而,現今照明產品皆應用於高電流密度操作下,故OLED壽命成為關鍵的問題;在此,本研究提供一種新穎方法,藉由使用堆疊結構並搭配高純度的染料,研製出壽命長達200,000小時的無藍害OLED;其元件電流效率為37.4 cd/A、外部量子效率(EQE)為22.7%、顯色指數(CRI)為80、自然光譜相似性指數(SRI)為78以及壽命(t50)為223,500小時;此外,其視網膜最大可忍受曝光極限(MPE)長達12,300秒 (3.42小時),並僅含微量的褪黑激素分泌抑制敏感度(MSS 1.7%),相較於冷白緊湊型螢光燈管(色溫5,921 K, MPE 343秒, MSS 29%)、發光二極體(色溫5,501 K, MPE 316秒, MSS 20%)與OLED(色溫5,000 K, MPE 548, MSS 12%),由視網膜保護角度來看,分別安全35、38與21倍;從褪黑激素抑制角度來看,分別安全16、11與6倍,可看出此元件具有保護人類健康的特性,並使無藍害OLED成為具有高潛力的照明。


    Most of the lighting products on the market contain large blue light, however, blue light will cause harm to the human body and even increase the risk of cancer. Therefore, in order to protect human eyes and physiology, we urgent need a low blue emission or blue hazard free lighting. Candle light-style organic light emitting diode (OLED) is so far the safest measure for its blue hazard free low color temperature illumination. However, lifetime is still the most critical reliability issue in OLEDs, especially in lighting applications that are closely associated with high current density operation. Here, we present a novel approach to develop blue-hazard free OLEDs with a lifetime exceeding 200,000 hours at 1,000 cd/m2 by employing a tandem structure with ultra-high purity emitter. The resultant device shows a current efficacy of 37.4 cd/A, an external quantum efficiency (EQE) of 22.7%, an 80 CRI, and a 78 SRI with a 223,500 hours lifetime (t50). Additionally, the resultant device also exhibits long retina exposure duration of 12,300 s (3.42 h) and suppresses very less melatonin generation (1.7%), compared to cool white compact fluorescent lamps (color temperature 5,921 K, MPE 343 seconds, MSS 29%), light-emitting diodes (color temperature 5,501 K, M PE 316 seconds, MSS 20%) and OLED (color temperature 5,000K, MPE 548 seconds, MSS 12%). From the view of retina protection, the resultant device has 35, 38 and 21 times safer respectively. From the perspective of melatonin suppression, it is respectively safer 16, 11 and 6 times, demonstrating that the fabricated OLED device to be a highly prospective general lighting source to safeguard human health and makes it become a lighting with high potential.

    摘要 1 致謝 5 目錄 12 表目錄 15 圖目錄 16 壹、 緒論 19 貳、文獻回顧 21 2-1、OLED的歷史發展 21 2-2、OLED的發光原理 40 2-3、OLED的基本結構 48 2-4、OLED的能量傳遞機制 49 2-5、光色定義 52 2-6、OLED的元件效率 53 2-7、OLED的元件壽命 55 2-8、OLED之發展 56 2-8-1、陽極材料 56 2-8-2、電洞注入材料 57 2-8-3、電洞傳輸材料 57 2-8-4、電子傳輸材料 58 2-8-5、電子注入材料 59 2-8-6、陰極材料 59 2-9、長壽命OLED的進展 61 參、理論計算 63 3-1、自然光譜相似性指數 (SRI) 的計算 63 3-2、顯色指數(CRI) 的計算 64 3-3、視網膜最大可忍受之曝光極限 (MPE) 的計算 66 3-4、褪黑激素抑制敏感度 (MSS) 的計算 67 3-5、OLED元件壽命(LT)的計算 69 肆、實驗方法 70 4-1、使用材料 70 4-2、元件設計與製備 71 4-2-1、元件電路設計 71 4-2-2、ITO基材清潔與表面前處理 72 4-2-3、發光層之製備 73 4-2-4、真空熱蒸鍍機裝置 74 4-2-5、成膜鍍率測定 76 4-2-6、有機材料之製備 76 4-2-7、無機層之製備 76 4-3、元件封裝 77 4-4、元件特性量測 78 4-4-1、元件光電特性 78 4-4-2、元件壽命量測 80 伍、結果與討論 83 5-1 元件結構 83 5-1-1、典型元件結構 83 5-1-2、串聯式元件結構 85 5-1-3、典型與串聯式OLED之比較 87 5-2、染料濃度對元件的影響 92 5-3、發光層厚度對元件的影響 98 5-4、染料純度對元件的影響 101 陸、結論 106 柒、參考資料 108

    1. Panzer, A., Depression or cancer: the choice between serotonin or melatonin? Medical hypotheses, 1998. 50(5): p. 385-387.
    2. Sato, M., T. Sakaguchi, and T. Morita, The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans. Biological Rhythm Research, 2005. 36(4): p. 287-292.
    3. Kozaki, T., et al., Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neuroscience letters, 2008. 439(3): p. 256-259.
    4. Brainard, G.C., et al., The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain research, 1984. 294(2): p. 333-339.
    5. Pauley, S.M., Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical hypotheses, 2004. 63(4): p. 588-596.
    6. Do 'environmentally friendly' LED lights cause BLINDNESS?
    7. Mills, P.R., S.C. Tomkins, and L.J. Schlangen, The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. Journal of circadian rhythms, 2007. 5(1): p. 2.
    8. Liao, L., K.P. Klubek, and C.W. Tang, High-efficiency tandem organic light-emitting diodes. Applied physics letters, 2004. 84(2): p. 167-169.
    9. Bernanose, A., M. Comte, and P. Vouaux, Sur un nouveau mode d'émission lumineuse chez certains composés organiques. Journal de Chimie Physique, 1953. 50: p. 64-68.
    10. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
    11. Helfrich, W. and W. Schneider, Recombination radiation in anthracene crystals. Physical Review Letters, 1965. 14(7): p. 229.
    12. Helfrich, W. and W. Schneider, Transients of volume‐controlled current and of recombination radiation in anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909.
    13. Vincett, P., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid films, 1982. 94(2): p. 171-183.
    14. Partridge, R., Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride. Polymer, 1983. 24(6): p. 739-747.
    15. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied physics letters, 1987. 51(12): p. 913-915.
    16. Tang, C.W., Organic electroluminescent cell. 1982, Google Patents.
    17. Tang, C.W., S.A. VanSlyke, and C. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616.
    18. Friend, R.H., J.H. Burroughes, and D.D. Bradley, Electroluminescent devices. 1993, Google Patents.
    19. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
    20. Era, M., et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 1991. 178(5-6): p. 488-490.
    21. Adachi, C., et al., Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 1988. 27(4A): p. L713.
    22. Kido, J., et al., White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
    23. Kido, J., M. Kimura, and K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science, 1995. 267(5202): p. 1332-1334.
    24. Hung, L., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
    25. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
    26. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
    27. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731.
    28. Huang, J., et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141.
    29. Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library.
    30. Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents.
    31. Shao, Y. and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510.
    32. Jou, J.-H., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied physics letters, 2006. 88(19): p. 193501.
    33. Sun, Y. and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature photonics, 2008. 2(8): p. 483.
    34. Reineke, S., et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234.
    35. Wang, Z., et al., Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011. 5(12): p. 753.
    36. Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234.
    37. Jou, J.H., et al., Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
    38. jou, j.-h., OLED introduction.
    39. Thompson, L.G. and S. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224.
    40. Dodabalapur, A., Organic light emitting diodes. Solid State Communications, 1997. 102(2-3): p. 259-267.
    41. Gill, W., Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. Journal of Applied Physics, 1972. 43(12): p. 5033-5040.
    42. Arkhipov, V., U. Wolf, and H. Bässler, Current injection from a metal to a disordered hopping system. II. Comparison between analytic theory and simulation. Physical Review B, 1999. 59(11): p. 7514.
    43. Lampert, M.A. and P. Mark, Current injection in solids. 1970.
    44. Murgatroyd, P., Theory of space-charge-limited current enhanced by Frenkel effect. Journal of Physics D: Applied Physics, 1970. 3(2): p. 151.
    45. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1‐2): p. 55-75.
    46. Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
    47. Klessinger, M. and J. Michl, Excited states and photochemistry of organic molecules. 1995: Wiley-VCH.
    48. Colorimetry. CIE. Vol. 15.2. 1986: Publication report.
    49. Stearns, E., Commission Internationale de L'Éclairage, Colorimetry, Publication CIE No. 15.2, 78+ vi pp., paperbound, price 28;CentralBureauoftheCIE,Vienna,1987.AvailableintheUSfromtheUSNationalCommittee,CIE,c/oNationalBureauofStandards,Gaithersburg,Maryland20899.SpecialpricetoUSNCmembersof 22.00. Color Research & Application, 1988. 13(1): p. 64-65.
    50. jou, j.-h., OLED introductuon.
    51. Van Slyke, S.A., C. Chen, and C.W. Tang, Organic electroluminescent devices with improved stability. Applied physics letters, 1996. 69(15): p. 2160-2162.
    52. Yang, J. and J. Shen, Doping effects in organic electroluminescent devices. Journal of applied physics, 1998. 84(4): p. 2105-2111.
    53. Liu, Z., et al., Efficient multilayer organic light emitting diode. Synthetic metals, 2001. 122(1): p. 177-179.
    54. Qiu, C., et al., Comparative study of metal or oxide capped indium–tin oxide anodes for organic light-emitting diodes. Journal of Applied Physics, 2003. 93(6): p. 3253-3258.
    55. Sugiyama, K., et al., Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. Journal of Applied Physics, 2000. 87(1): p. 295-298.
    56. Elschner, A., et al., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic metals, 2000. 111: p. 139-143.
    57. Sakamoto, G., et al., Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules. Applied Physics Letters, 1999. 75(6): p. 766-768.
    58. Giebeler, C., et al., Influence of the hole transport layer on the performance of organic light-emitting diodes. Journal of applied physics, 1999. 85(1): p. 608-615.
    59. Lee, J., et al., Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices. Applied Physics Letters, 2008. 93(12): p. 348.
    60. Gao, W. and A. Kahn, Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Applied Physics Letters, 2001. 79(24): p. 4040-4042.
    61. Wakimoto, T., et al., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on electron devices, 1997. 44(8): p. 1245-1248.
    62. Ganzorig, C., K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Materials Science and Engineering: B, 2001. 85(2-3): p. 140-143.
    63. OLED-info. Panasonic developed a 114 lm/W OLED panel - claims world's most efficient panel. 2013; Available from: https://www.oled-info.com/taxonomy/term/129/all?page=4.
    64. Liu, B., et al., Efficient hybrid white organic light-emitting diodes with extremely long lifetime: the effect of n-type interlayer. Scientific reports, 2014. 4: p. 7198.
    65. BRANDS, A. WHY OLED? 2014; Available from: http://hydrel.acuitybrands.com/sitecore/content/acuitybrandscorporate/home/oled/why-oled.
    66. Jang, S., Y. Lee, and M. Park. 44.1: Invited Paper: OLED Lighting for General Lighting Applications. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library.
    67. Miller NJ, L.F., OLED Lighting Products:
    Capabilities, Challenges,
    Potential. 2016.
    68. OLED-info. Yeolight developed new amber OLED lighting and automotive OLED rearlights. 2017; Available from: https://www.oled-info.com/yeolight-developed-new-oled-panels-and-automotive-oled-rearlights.
    69. Chang, C.-C., et al., High-efficiency organic electroluminescent device with multiple emitting units. Japanese journal of applied physics, 2004. 43(9R): p. 6418.
    70. Chang, C.-C., et al., Highly efficient white organic electroluminescent devices based on tandem architecture. Applied Physics Letters, 2005. 87(25): p. 253501.
    71. Chen, C.-W., et al., Effective connecting architecture for tandem organic light-emitting devices. Applied Physics Letters, 2005. 87(24): p. 241121.
    72. Su, S.J., et al., Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton‐confining structure for reduced efficiency roll‐off. Advanced Materials, 2008. 20(21): p. 4189-4194.
    73. Sun, J., et al., Effective intermediate layers for highly efficient stacked organic light-emitting devices. Applied Physics Letters, 2005. 87(9): p. 093504.
    74. Féry, C., et al., Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Applied Physics Letters, 2005. 87(21): p. 213502.

    QR CODE